Design Objectives

Safe workable economical design Select structural di Satisfy serviceability requirements Detailing reinforcement

Building structural systems

Frame system Frame system with shear walls Reinforced concrete Load bearing walls Masonry load bearing walls Precast concrete system

Floor systems Beams-slab system [one way –two way] Ribbed (waffle slab) Flat plate Flat slab with drop panels with or without capitals

Basic design relationship: Reduction factor x Material capacity > Load factor x actual loads Reduction factors < 1 applied to M, V, etc Load factors > 1 applied to live, dead, wind, EQ, etc

One-Way Slab, Beam, and Gird

One-Way Slab, Supported by Beams or Walls

One-Way Joist Slab

Waffle Slab

Flat Slab

Two-Way Slab Supported by Beams

One way Slab

a. If the long span > 2 x short span
b. Supported only in one direction

Take a strip from the slab one meter width

Find the loads on one m2 and find moments from

ACI coefficients if the following criteria's are satisfied:

- 1. There are two or more spans.
- 2.Different in span length not more than 20%
- 3.Loads are uniformly distributed.
- 4.Live load < 3 times dead load.
- 5.Memebrs are prismatic.
- For -ve moment L is average of two adjacent clear

spans.

Approximate moment and shear of continuous beams or one-way slabs (ACI 8.3.3).

EXAMPLE

If the slab shown is reinforced with 12mm @ 40 cm c/c at bottom straight and 12mm @40 cm c/c at bottom bent up check the design of the slab? 5m 5m 5m thickness = 20 cm 6m Soln: min t = L/24 for end span 6m $\min t = (5000-400)/24 =$ = 192 mm < 200 okfrom ACI coeff: max -ve M beam width = 40 cmat 1st support = $wL^2 / 10$

find the load w from the drawings and for what purpose the building is constructed, Live load from tables...

Exposure	Member					
		Simply Supported	One End Continuous	Both Ends Continuous	Cantilever	Source
Not supporting or attached to partitions or other construction	Solid one-way slabs	1/20	e/24	l/28	€/10	ACI Table 9.5(a)
likely to be damaged by large deflections	Beams or ribbed one-way slabs	€/16	e/18.5	l/21	€/8	
Supporting or attached to partitions or other construction likely to be damaged by large	All members: $\omega \leq 0.12^{\circ}$ and $\frac{\text{sustained load}}{\text{total load}} < 0$	(/10 0.5	l/13	ℓ/16	€/4	
deflections	All members: $\frac{\text{sustained load}}{\text{total load}} > 0$	€/6 .5	2/8	٤/١٥	1/3	

TABLE A-14 Minimum Thicknesses of Non-Prestressed Beams or One-Way Slabs Unless Deflections Are Computed

 $^{a}\omega =
ho f_{y}/f_{c}^{\prime}$

steel area provided = 12 @ 40 cm both sides so = 12@20 cm you have 5 bars /m = 5x113 = 565 mm² /m ...design ok

Example : Two way slab

Take the interior slab $5 \ge 6 \le 100$ slab thickness, as before = 20 cm

Therefore loading as before . Approximate depth = perimeter/180

h = 2 (5+6) / 180 = 0.13 mwe have 20 cm = 0.2 m ...ok find moment coefficient from tables, for slab with three edges

contineous, one edge discontoneous. short span/long span = 4.6/5.6 = 0.82

beam width = 40 cm

max coeff is for (-ve at top) at contineous edges = 0.055

	Short span							
	Span ratio, short/long						all	
Moments	1.0	0.9	0.8	0.7	0.6	0.5 and less	span ratios	
Case 1—Interior panels								
Negative moment at:								
Continuous edge	0.033	0.040	0.048	0.055	0.063	0.083	0.033	
Discontinuous edge	—		—	—			_	
Positive moment at midspan	0.025	0.030	0.036	0.041	0.047	0.062	0.025	
Case 2-One edge discontinuous								
Negative moment at:								
Continuous edge	0.041	0.048	0.055	0.062	0.069	0.085	0.041	
Discontinuous edge	0.021	0.024	0.027	0.031	0.035	0.042	0.021	
Positive moment at midspan	0.031	0.036	0.041	0.047	0.052	0.064	0.031	
Case 3—Two edges discontinuous								
Negative moment at:								
Continuous edge	0.049	0.057	0.064	0.071	0.078	0.090	0.049	
Discontinuous edge	0.025	0.028	0.032	0.036	0.039	0.045	0.025	
Positive moment at midspan:	0.037	0.043	0.048	0.054	0.059	0.068	0.037	
Case 4—Three edges discontinuous								
Negative moment at:								
Continuous edge	0.058	0.066	0.074	0.082	0.090	0.098	0.058	
Discontinuous edge	0.029	0.033	0.037	0.041	0.045	0.049	0.029	
Positive moment at midspan:	0.044	0.050	0.056	0.062	0.068	0.074	0.044	
Case 5—Four edges discontinuous								
Negative moment at:								
Continuous edge	—		-	-			-	
Discontinuous edge	0.033	0.038	0.043	0.047	0.053	0.055	0.033	
Positive moment at midspan	0.050	0.057	0.064	0.072	0.080	0.083	0.050	

TABLE 4.7 Elastic Moment Coefficients for Two-Way Slabs

weight of wall per meter of beam = (3.5 - 0.5) 5.2 = 15.6 kN/m length.weight of beam = 0.4x0.5x25=5 kN/m

wt from slab on beam = w $\left[\frac{(1+6)}{2} \ge 2.5\right] - \frac{2}{6} \ge 1.25 = 3.65$ w

dead load from slab = $3.65 \ge 6.35 = 23.2 \text{ kN/m.L}$ Total dead load = 15.6 + 5 + 23.2 = 43.8 kN/mtotal live load on beam = $3.65 \ge 4 = 14.6 \text{ kN/m}$ factored load = $43.8 \ge 1.4 + 14.6 \ge 1.7 = 86.1 \text{ kN/m}$

max -ve moment = wL² / 9 = 86.1 (5.6)² / 9 = 300 kN.m
A s = 300x10⁶ /(0.9x420x0.9x440) = 2004 mm²
= 4 bars 25 mm....check with the bars provided...

$$1_{4} = \frac{1/9}{1/16 \frac{1/9}{1/14}}$$

beam min depth = h = L/18.5 = 5.6/18.5 = 0.3 m < 50 cm ok

beam min $A_s = 0.0033 \text{ bd} = 0.0033 \text{x}400 \text{x}500 = 660 \text{ mm}^2 \le 2000 \text{ ok}$

Columns

Approximate load calculation based on area supported from this approximate equation:

$$P_u = 0.4 f_c' A_c + 0.5 f_y A_s$$
 where :

- P_u : max load on col.
- fc' : concrete cylinder compressive strength
 - $= f_{cube} / 1.25$
- f y : steel yield strength
- A'_{s} : total steel area in col. 0.01 $A_{c} < A_{s} < 0.04 A_{c}$

Design load on col. = K x load based on static calculation of reaction (based on area supported)

K factor

column location	top storys	next to top	lower storys
internal	1	1	1
external	4.5	2	1.4
corner	6	2.3	1.8

These factors to be used for checking if no moment is considered

EXAMPLE

our frame example suppose it is two storied building col to be checked is (ab) at ground floor area supported = $(2.5+2.5)(6/2)=15 \text{ m}^2$ load on column : $\frac{\text{from roof}}{15x 2 \text{ (assumed)}} = 6$

30 kNdead load : slab + tile + ceiling = 6.35 x 15 = 95kN from beams = (2.5+2.5+3)x 5 kN/m = 40 kN

total dead load from roof = 135 kNFrom first floor : live load =15x4=60kN dead load : slab + tile + ceiling = $6.35 \times 15 = 95$ kN from beams = (2.5+2.5+3)x 5 kN/m = 40 kNfrom walls=(5+3)x15.6 = 125 kNcolumn wt say =0.3x0.3x3.5x25= 7.875=8 kN total dead load from 1st floor = 95+40+125+8=268kN col wt of ground floor = 0.3x0.3x5x25=11.25=12kNnote : if you have tie beam add wt of tie beam and wall on it total live load on col(ab)=30+60=90kN total dead load on col(ab)=135+268+12=415 kN factored load= 1.4x415+1.7x90=734kN

since this is an external column and next to the top story then K factor is 2, and P $u = 2 \times 734 = 1468 \text{ kN}$

Now check your column : suppose your col is 30x30 cm with 8 bars of 16 mm...and concrete f c' = 25 Mpa

Then: $P_u = 0.4x25x300x300+0.5x420x8x200=1236000N$ = 1236kN < 1468kN ..not good

if the steel was 8 / 20 mm, then $P_u = 1428 \text{ kN}$ app 1468 ok

Footing

check the single footing for col (ab) of last example: suppose your soil allowable bearing capacity =14T/m2and the footing dimension is 2x2x0.4m at depth of 1.5 m from ground level.

Ultimate load from the col = 734 kN and the service loads (unfactored) = 415 + 90 = 505kN see col.loads

weight of footing=2x2x0.4x25=40kN

weight of soil above footing = (1.5-0.4)x2x2x19=84 kN total wt on the footing base=505+40+84=629kN required area of footing = 629/140=4.5 m²=2.12x2.12> 2x2 not ok very close lets say ok Check the steel provided suppose it is 16 mm@15 cm

Check the steel provided..suppose it is 16mm@15cm

check depth for punching shear, ultimate bearing pressure= $734/(2x2) = 183.5 \text{ kN/m}^2$ punching perimeter=0.65x4=2.6m=2600mm bo punching area=0.65x0.65=0.4225m² punching load=734 - 183.5x0.4225=656.5kN concrete punching shear 2 capacity Vc=0.33 fc' xboxd =0.33x5x2600x350=1502kN0.65 >734kN ok 65 2 check beam shear: $V_c = 0.17 \sqrt{f_c} bd$ Vc=0.17 x5x2000x350=595 kN 0.85 Vu=0.5x2x183.5=183.5kN ok 0.5

18

moment at face of column= w $L^2/2$ = (183.5x2) (0.85)² /2 =132.6 kN/2m A s = 132.6x10⁶ / (0.9x420x0.9x350) = 1112 mm²/2m provided 16mm @ 20cm c/c = 5 bars / m = 5x200= 1000 mm²/m = 2000 mm² / 2m > 1112 ok

Thank YOU