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1  Abstract 

The available solutions of the limit equilibrium analysis of walls against 

sliding and tilting allows designing the minimum weight and the 

geometry of a wall that ensure stability. However, a proper design of a 

retaining wall in pseudo-static condition must satisfy the stability 

requirements with a suitable margin of safety against the failure 

condition, as prescribed by most seismic codes. In particular, in the 

rotational equilibrium it is necessary to distinguish the contribution due to 

the earth lateral pressures mobilized along the failure surface and the 

inertial effect of the soil failure wedge. In this paper a design procedure 

for retaining walls is proposed, based on a closed form solution and 

accounting for the sliding safety factor and the evaluation of the driving 

moments on the wall consistent with the failure mechanisms. 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

1 Introduction 

The problem of the stability of earth retaining walls was originally 

solved by Coulomb [1] and Rankine [2]. According to these 
theories the resultant of the active lateral pressures exerted by the 
backfill soil onto the wall can be written in the form: 
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Where γ and c are the unit weight and the cohesion of the soil, H is the height 

of the retained soil and KA is the active earth pressure coefficient depending 

on the angle of shear resistance  of the soil. 

Coulomb’s theory was generalized for cohesion less soils by Mueller-Breslau 

[3] to account for the frictional interaction between the retained soil and the wall 

face expressed by the angle δ between the earth thrust and the normal to the wall, 

the angle β of the internal face of the wall with respect to the vertical, and the 

slope i of the retained soil. The basic assumptions underlying these solutions are: 

1) plane strain conditions; 

2) dry and homogeneous backfill soil obeying the Mohr-Coulomb failure 

criterion; 

3) minimum resultant of the lateral stress distribution acting on the wall at failure; 

4) plane failure surface inclined at an angle  to the horizontal; 

5) soil failure wedge behaving as a rigid body. 

 

 



 

  

 

 

 

The accuracy of solutions provided by methods of analysis based on overall 

equilibrium depends on the failure mechanism assumed for the particular 

problem at hand. The selection of a proper failure mechanism is therefore of 

great importance for assessing a reasonable limit load. In fact, once the shape of 

the failure surface is defined, the problem consists of finding its most critical 

position. As stated above, in the Coulomb failure mechanism the failure surface  

is assumed to be a plane. Better estimates of the earth thrust can be derived using 

more complex failure surface patterns through the method of characteristics 

developed by Sobolewski [4] or applying the theorems of limit analysis (Chen 

[5]). However, the difference in the solutions for the active limit state is 

negligible, while it is significant for the passive limit state, especially for high 

values of the soil-wall friction angle , the assumption of plane failure surface 

leading, in this case, to overestimated and, thereby, conservative values of the 

passive earth pressure coefficient. 

Evidence of earthquake-induced damage to retaining structures stimulated the 

interest for solutions capable of embodying the effect of seismic loading on earth 

pressures. The theory currently used in the seismic design of retaining walls is 

represented by the Mononobe-Okabe (M-O) pseudo static approach (Okabe [6]; 

Mononobe & Matsuo [7]). This theory is an extension of Coulomb’s theory in 

which the effect of earthquake-induced inertia forces arising in the soil due to 

seismic loading is taken into account, introducing static body forces. The 

assumption that soil behaves  as a rigid body implies that the seismic acceleration 

does not vary within the soil wedge and is coincident with the acceleration at the 

base of the wall. 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

Also in seismic conditions, active earth pressure coefficients 

obtained using the M-O method and the limit analysis theorems are 

in close agreement since the log-spiral failure curves obtained by 

limit analysis are almost planar (Chen & Liu [8]). Planar failure 

surfaces were also observed in dynamic model tests carried out on 

shaking tables (Elms & Richards [9]; Oldecop et al. [10]; Cascone 

[11]; Cascone et al. [12]) and in centrifuge (Bolton & Steedman 

[13]) 

 

In the last decades several theoretical analyses and experimental 

investigations have been carried out to study the behaviour of 

retaining walls under both static and seismic conditions. A design 

approach based on the concept of limited displacements was 

proposed by Richards & Elms [14] and different relationships are 

available to evaluate the seismic-induced displacements of 

retaining walls (Richards & Elms [14]; Zarrabi-Kashani [15]; 

Whitman & Liao [16]; Crespellani et al. [17]).



 

  

 

 

A pseudo-dynamic analysis was also developed by Steedman & Zeng 

[18], in which a finite shear wave velocity in the backfill is accounted 

for. In this analysis, the influence of a change in phase and magnitude 

of the seismic acceleration on the earth thrust and its point of 

application was evaluated. Modifications of the M-O approach have 

recently been suggested to account for the vertical seismic 

acceleration (Fang & Chen [19]) and the post-peak reduction in soil 

shear strength along previously formed failure surfaces (Koseki et al. 

[20]). 

The available design methods are based on the equilibrium of a 

soil wedge, and the effect of the wall on the solution is disregarded. 

This effect is significant since a change in the weight of the wall 

implies a change in the failure mechanism and in the forces that are 

to be balanced (Chen & Liu [8]). 

In this study, the limit equilibrium procedure is used to design 

the weight of a retaining wall that satisfies equilibrium against 

sliding and tilting, assuming a vertical and smooth face of the 

retaining wall (β = δ = 0), and a horizontal backfill (i = 0). 
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1 Sliding equilibrium of retaining walls 

1.1 Static conditions 

The limit equilibrium of a retaining wall depends on the geometry of the wall 

and on the mechanical properties of both the backfill and the foundation soil. In 

static limit equilibrium the resisting force R at the base of the wall, which 

depends on the wall weight, is completely mobilized and expressed by the 

relationship: 

R  FA  Ww   Ww tanb (2) 

where FA is the friction resistance, Ww is the weight of the wall and  is the 

friction coefficient depending on the friction angle b at the contact of the wall 

base with the foundation soil. 

The resultant of the stresses mobilized in the backfill along the failure surface 

represents the driving force D and since  = 0 is assumed, D is horizontal. 

Equating D to R, using the Mohr-Coulomb failure criterion with c' = 0, the 

condition of static incipient failure can be expressed as: 
 

W    
  

H 
2
 

w  
2
 cot tan      (3) 

Introducing the positions: 

Y  tan    tan    
2 W

w
 

  H 
2
 

(4) 

eqn. (3) can be put in the non-dimensional form: 

    Y
2
     1Y    0 (5) 

 

where  represents the non-dimensional weight of the wall 

Solving eqn. (5) a characteristic value for  is obtained

  

0  
(6) 

that represents the minimum non-dimensional weight of the wall that brings the 

system to limit equilibrium. 0 depends only on the angle of shear resistance  

and on the friction coefficient . Systems characterized by values of  smaller 

than 0 result in static instability, whereas systems for which  is greater than 0 

are stable under static conditions. 

 



 

  

 

 

 

 

1.2 Seismic conditions 

 

The forces acting in the soil-wall system under seismic loading are shown in Fig. 

1. Under seismic conditions the resisting and the driving forces are given by the 

following relationships: 

R  FA  k h Ww  Ww    kh  (7) 

D  W   k  tan        
 

H 
2
 cot  k 

 
 tan      (8) 

s   h  2  h 

where kh is the coefficient of critical acceleration, defined as the ratio between  

critical acceleration and gravity. 

Equating D to R and using the positions previously introduced (eqn. (5)), the 

non-dimensional equilibrium equation is obtained: 

 

    k  Y2
      k   k   1 Y    k  0 (9) 

h  h h  h 

 

Equation (9) reduces to the equilibrium equation (4) for static conditions for 

kh = 0. 

For a given soil-wall system, identified by a value of the non-dimensional 

weight of the wall , assuming kh as a parameter, eqn. (9) admits 

 solutions. 

Thus it is not possible to determine the solution (, kh) that describes the 

configuration of the system in the condition of incipient failure. Solving eqn. (8) 

with respect to the critical seismic coefficient, the following expression is found: 

 

 

Y
2
    1 

k h   
Y

2
      

Y  

Y 1 
(10) 
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Figure 1: Soil-wall system in pseudo static limit equilibrium. 

 

that describes a parabola in the plane (, kh). The solutions of kh and  
can be decoupled by annulling the discriminant of eqn. (9). A second 
power equation in the unknown kh is then obtained, whose positive root 
is: 

 

h 

   
2

  

(11) 

Equation (11) provides the minimum critical seismic coefficient. 
Minimizing eqn. (10) with respect to Y, the inclination of the failure 

plane is determined, independently of k h: 

 

1  (1  
2 

)   (1  
2 

) 1    (  )  
tan   

 


1  
 (12) 





Equations (11) and (12) represent the solution associated to the 

limit equilibrium condition, and can be used only in the seismic 

evaluation of a given soil-wall system. 
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Using the same approach, the problem can be solved to 

determine the non- dimensional weight of the wall  strictly 

required for the limit equilibrium condition, when a design seismic 

coefficient kh is given. 

In this case, the properties of the soil and the height of the wall 

are fixed, and using the same minimization procedure, the non-

dimensional weight of the wall and the inclination of the failure 

plane are obtained: 
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tan  


   k
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k
h 

(13b) 

 

 

 

 

Fig. 2 shows the variation of  with  = b, for several values of 

the parameter kh. In particular, the curve associated to kh = 0 (static 

condition) represents the variation of 0. For fixed values of the 

angle , Fig. 2 provides evaluating the minimum non-dimensional 

weight of the wall that in a pseudo-static condition ensures 

stability. 
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Figure 2: Minimum wall non-dimensional weight in seismic condition. 

 

 

 

 

 

1.3 Seismic design of walls 

 

Using the solutions presented above it is possible to proceed to the design 
of retaining walls. According to most seismic codes, the retaining wall 
must satisfy equilibrium against sliding and tilting. As far as wall sliding 
equilibrium is concerned, the safety factor fs is usually defined as: 

 

f  
R 
 f 

s 
D

 

 

 

s,min (14) 

 

where fs,min is a reference value given in seismic code. 

Using eqns. (7) and (8), and fixing a design safety factor fs  fs,min eqn. 
(14) can be rewritten as follows: 



 

 

 

f 2 

W    k   f  
 

H 
2
 cot  k  tan     


  (15) 

w h s   
2  h 

 

where the safety factor amplifies the driving forces to guarantee a safe design at 

working conditions with respect to the failure condition. Dividing both sides of 

eqn. (15) by fs the following equation is obtained: 
 

Ww 
 

  k   

 
H 

2
 cot  k  tan      (16) 

  h   h 
  s 



and introducing the new position: 
 


*
  




fs 

 

 

(17) 

it is possible to study the design problem as a limit equilibrium condition. 
In fact, using the non-dimensional formulation previously introduced, the 
limit equilibrium equation is obtained again: 

 


*
    kh  Y2

  
*
    kh   kh 1 Y    kh  0 (18) 

 

Equation (18) is formally identical to eqn. (9) but differs from it in the term 
*
, 

which represents a weight of the wall smaller than the actual weight required in 

working conditions. 

Thus, the correlation between  and  shown in Fig. 2 can be used as a design 

graph, as shown in Fig. 3. Given the characteristics of the soil, for a fixed value 

of the seismic coefficient kh, the graph allows evaluating the non-dimensional 

weight 
*
 at failure. 

Using eqn. (17), the parameter  is obtained that represents the design value 

of the weight of the wall at working conditions and that ensures stability with a 

suitable margin of safety against the failure condition. 

1.4 Sample application 

To design a gravity retaining wall for any value of the safety factor fs and given 

soil parameters it is necessary to solve the limit equilibrium problem only once, 

derive 
*
 and multiply its value for the selected safety factor. In this application  

a wall in the area of the city of Catania, characterized by a seismic coefficient 

kh = 0.07, is designed for three values of the safety factor fs = 1.3, 1.4 and 1.5. An 

angle of shear strength of the soil  = 30° and .a base friction coefficient 

 = tan are assumed. 

In Fig. 3, for  = 30°, 
*
 = 0.742 is obtained and correspondingly the three 

searched values 1.3 = 0.964, 1.4 = 1.039 and 1.5 = 1.113 are calculated. 

The real weight of the three walls satisfying the equilibrium with the selected 

safety factors against sliding, can be obtained from one of the positions given in  

eqn.(4).



 

 

 

 



Once the height of the wall H and the unit weight of the soil  are known. For 

the problem at hand, assuming H = 3.5 m and  = 18 KN/m
3
 the following 

values of the wall weight are obtained: W1.3 = 106.28 KN/m, W1.4 = 

114.55 KN/m and W1.5 = 122.71 KN/m. 
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Figure 3: Design chart for non-dimensional weight wall. 

1.5 Discussion of results 

The design procedure described above allows us to readily evaluate the weight of 

a retaining wall as the product of the weight strictly required to satisfy the limit 

equilibrium condition and the safety factor. The wall, therefore, satisfies the 

sliding equilibrium with the required level of safety but the real failure 

mechanism of the wall is different from the failure mechanism assumed in the 

design procedure. In fact, the real wall is characterized by a non-dimensional 

weight , larger than the non-dimensional weight 
*
 introduced in the limit 

equilibrium equation. As a consequence, the real wall is characterized by a 

smaller inclination of the failure surface and a larger value of the critical 

acceleration (Calabrian [21; Calabrian et al. [22]). 

The safety factor has thereby the effect of modifying the failure condition as 

shown in Fig. 4. Fig. 4a shows the variation of the acceleration coefficient with 

the weight of the wall. In particular, the value of the critical acceleration 

coefficient increases for increasing safety factors. Fig. 4b shows that  decreases 

for increasing values of fs, implying that a larger mass of soil is involved in the 

actual failure mechanism. This means that the failure plane intercepts the ground 

surface behind the wall at increasing distances, with the possibility of involving 

other structures in the collapse. 

kh = 0.07  = tan
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Figure 4: Failure conditions for   b = 30°: a) kh, b) . 

Table 1 reports the values of the non-dimensional wall weight , of the 

critical seismic coefficient kh and of the failure plane angle  for the limit 

equilibrium condition and for the three values of the safety factors assumed in  

the sample application described above. 

Table 1: Results of the design procedure. 

 

fs  kh 

1.0 0.742 0.07 56°.83 

1.3 0.964 0.138 53°.27 

1.4 1.039 0.156 52°.25 

1.5 1.113 0.172 51°.29 

 

Increasing fs from 1 to 1.3 the critical acceleration coefficient almost doubles, 

reaching a value of 0.138; by increasing fs smaller increments of kh are obtained. 

Consistently, the reduction of the failure plane angle is of about 3° when fs 

increases from 1 to 1.3, while smaller reductions are obtained for larger values of 

the safety factor. 

Fig. 5 shows possible schemes of the failure mechanisms defined in Table 1 

for a wall of unit height. The scheme illustrates the increase in the dimensions of 

the failure wedge for increasing fs, envisaging that if during a seismic event the 

critical acceleration should be overcome, other structures could suffer from 

settlements. 
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Figure 5: Failure schemes for increasing safety factors. 

 

The usual design of a retaining wall consists in the evaluation of the weight of 

the wall that at working conditions satisfies limit equilibrium with a required 

level of safety. Conversely, the proper design of a retaining wall should also 

evaluate the actual failure conditions of the designed wall to predict the soil-wall 

behaviour at ultimate conditions. 

 

2 Design procedure for rotational equilibrium 

Sliding stability allows determining the minimum weight required at limit 

equilibrium under static or pseudo static conditions. However, the complete 

design of a retaining wall requires also rotational (tilting) and vertical 

(foundation bearing capacity) equilibria to be satisfied. The M-O theory allows 

evaluating the total earth thrust but does not help to distinguish the contribution 

due to the earth lateral pressures mobilized along the failure surface that 

develops in the soil in seismic conditions and the inertial effect of the soil failure 

wedge. Moreover, the M-O theory is based on a sliding equilibrium and does not 

provide any information on the point of application of the total earth  thrust. The 

magnitude and the points of application relevant to the two contributions 

mentioned above are then evaluated to study the rotational equilibrium. In  

current analysis of retaining walls, according to the Italian seismic code, the 

seismic active earth thrust SAE is assumed to be the sum of the static active thrust 

SA applied at 1/3 of the wall height, and the inertial effect of the soil wedge SAE 

applied at 2/3 of the wall height is evaluated so that the sum of the two 

contributions is consistent with the M-O theory: 
 

SAE  SA  SAE (19) 
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This approach implies that for evaluating the driving forces and moments two 

distinct failure mechanisms are considered at the same time, but these 

mechanisms cannot be both true at the same time, since for a given wall weight 

only a failure mechanism is possible. 

In the second term of eqn. (8) it is possible to identify a seismic earth pressure 

coefficient KAE that can be split into the sum of two terms: 

KAE  cot    kh  tan     

KAI  cot   k h 

KA  cot    tan     

(20) 

 

where the term KA takes into account the effect of the distribution of the earth 

pressures along the seismic failure surface: it is analogous to the static earth 

pressure coefficient (S), but differs from it because it is evaluated along the 

pseudo static (PS) failure surface (S ≠ PS); the term KAI takes into account the 

effect of the inertia forces acting in the soil wedge. 

In Fig. 6 are shown the variations of the three coefficients KA, KAI and KAE 

obtained using the proposed design procedure and the inertial coefficient KAI 

defined as: 
 

KAI  KAE PS   KA  S  (21) 

 

adopted in current analysis. 
For values of kh in the range 0-0.1, KA is not significantly affected by 

kh and the error involved using the static value (obtained for kh = 0) is 
negligible. Conversely, for values of k h > 0.1 the effect of the seismic 
coefficient on the earth pressure coefficient is remarkable (Fig. 6a). 

As a consequence, by comparison between Fig. 6b and 6d, in which 
the inertial effect obtained via the proposed design procedure and the 
current analysis are plotted respectively, it is evident that by increasing 
the seismic coefficient the latter method underestimates the inertial effect. 
This is due to an incorrect evaluation of the earth thrust coefficient in 
seismic conditions. This error can be relevant when the equilibrium 
against tilting is considered. In fact, the driving moment evaluated 
according to the Mononobe-Okabe theory and the Italian Seismic code M: 

 

M  S 1 H  S 

A 3 

2 H 
AE 3 

 

can be put in the non-dimensional form: 
 

M 
*
  

6  M 
MO  K 

 

    2  K  2  K    K    (22) 
  H 

3
 

A S AE AE PS A S 



 

 

 

 

(a) 

(b) 



M 


  

and depends on two different failure mechanisms. The non-dimensional 
driving moment evaluated according to the proposed procedure is: 

 

M 
*
  K      2  K      (23) 

P A PS AI PS 

 

and is calculated as the sum of two coefficients evaluated on the same 
pseudo- static failure plane. 
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Figure 6: Earth thrust coefficients in pseudo-static conditions. 

 

In Fig. 7 the error involved in the usual procedure with respect to 
the proposed approach, expressed as: 

 

M 
*
  M 

*
 

E
M * 

P 

 

(24) 

 

is shown as a function of the angle of the soil shear strength  and for 
different values of the seismic coefficient kh. For small values of kh the 

error is negligible and it is not affected by ; conversely for k h > 0.3 the 

error can be significant, and for small values  may lead to unsafe 
results. 
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Figure 7: Error in driving moment evaluation. 

 

 

 

 

 

 

3 Conclusions 

A new procedure for the seismic design of concrete walls, 

consistent with the Monotone-Okabe theory, was proposed. The 

procedure is based on closed form solutions of the pseudo-static 

limit equilibrium of walls against sliding (Calabrian et al. [23]). 

The design of the concrete structure basically consists in the 

evaluation of the wall weight necessary to resist earth thrust at 

limit equilibrium. 

 A minimum non-dimensional weight can be determined for the 

limit equilibrium condition, then a safety factor fs, defined to meet 

design requirements but at least equal to the safety factor fs,min 

imposed by the seismic code, can be applied to provide a certain 

degree of safety against wall sliding. 

 



 

 

 

 

 

 

The choice of the safety factor should be carefully evaluated. 

Since wall design is based on limit equilibrium conditions, 

increasing the safety factor has the effect of modifying the 

reference soil-wall system and, thereby, the actual failure 

mechanism. In the current design procedure the characteristics of 

the actual failure mechanism (failure plane angle, critical 

acceleration) are not usually investigated. However, to safer walls 

larger failure wedges correspond that might involve adjacent 

structures in the failure mechanism. The current design procedure 

of retaining walls is then somewhat tortuous: a wall is designed 

with reference to limit equilibrium condition for a specified value 

of the seismic coefficient. A safety factor is then applied to the wall 

weight to guarantee a larger degree of safety, then a new soil-wall 

system is obtained with a different failure mechanism from that of 

the system initially designed for the limit equilibrium condition, 

and finally the new failure mechanism should be investigated. A 

simpler procedure might be based on the selection of a convenient 

value of the maximum design acceleration at ultimate conditions 

and on the evaluation of the weight of the wall that reaches the 

limit equilibrium condition at the given design acceleration. 

According to this procedure, the designed wall will be 

characterized by a critical acceleration equal to the design 

acceleration, the actual safety factor resulting in unity. 

The proposed approach allows also distinguishing the 

contributions of the earth thrust and of the inertia of the soil wedge. 

This distinction leads to a more rational design of the walls against 

tilting that takes into account the actual driving moments, 

underestimated in the current approach for large values of the 

seismic coefficient. 
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