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ABSTRACT

This project describes the state and behaviour of shear stress distribution and warping
shear flow due to an applied torque on thin-walled channel cross section under
restrained torsion. When the warping is restrained, warping normal stresses will be
induced. These warping normal stresses will induce warping shears, which will provide
a torsional restraining moment. This moment is defined as a warping torsional moment.
In addition the pure torsional moment provides equilibrium in the system, which is
discussed in chapter 4. Also it describes the state of the bending stress, shear stress
and displacement of a rectangular section when subjected to a point load at the free
end of the cantilever beam, which is discussed in chapter 3. Moreover, it will be seen
that the maximum bending stress occur at the top and bottom surfaces of the cross
section of the beam and it varies linearly. The longitudinal stress is zero at the free end
of the cantilever beam and the maximum deflection occurs at the free end.

The theories and assumptions for thin-walled open section beam under restrained
torsion and pure torsion are explained in the literature review (see chapter 2).
Theoretical analyses has been approved for thin-walled channel section subjected to
restrained torsion-bending and investigate how the direct stress system is induced by
axial constraint and a variety of warping stress, warping displacement and angle of
twist in the longitudinal axis. Also, warping stress, shear flow and warping displacement
round section profile (see chapter 5).

Finite element analysis solutions and results are obtained and organized by Strand 7
software. Finite element and theoretical results are compared by tables and graphs to
provide percentages of error for thin-walled channel section cantilever beam under

restrained torque loading (see chapter 6&7).
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Chapter 1: Introduction

1.1 Background

The thin-walled structure is the most modern and optimal, designed for minimum
weight and maximum stiffness. Thin-walled structures are fabricated from thin steel
plates into thick beam section and thin-walled beam section. Thin-walled beams are
commonly used in civil engineering structures generally in torsion due to high strength
and low weight. In addition, any shapes of open cross sections are torsionally very
flexible and twists readily when a torque is applied.

Torque is a common form of load in aircraft structures. A torque is a moment or couple
that has the unit N.m. The difference between a torque and bending moment is that the
torque acts about the longitudinal axis of a beam, whereas a bending moment acts
about an axis that is perpendicular to the longitudinal axis of the beam.

According to the St. Venant theory; in the case of uniform torsion, in which it is
assumed that when a torque is applied to unrestrained members then the cross
sectional shape is maintained but that the plane of the cross section can warp freely
along the member and no longitudinal stresses develop. This is applied for all cross
section without any axial constraint of longitudinal members and the angle of twist will
be constant along the longitudinal axis of the members.

According to the Wagner theory; in the case of nonuniform torsion (restrained torsion)
cross sections are not free to warp and longitudinal stresses will occur which is varying
along the member. In addition warping shear flow induces due to restrained torsion and
the angle of twist will no longer be constant but will vary along the axis of the member.
When transverse load is applied to a thin walled section, the torque will occur if the
load does not pass through the shear centre of the cross section.

While the member is restrained from warping, such as the fixed end of the cantilever
beam in Fig (5.1), the resulting torsion at the point of warping restraint is called warping
torsion. The warping stresses are shear (different from the St. Venant shear stresses)

and longitudinal stresses. These longitudinal stresses will directly add to bending
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stresses if the member is also subjected to major or minor axis bending moments.
Along the length of the cantilever beam, both St. Venant and warping torsional stresses
are present.

According to the theories of the St. Venant and Bredt-Batho, it was assumed that there
is no warping stress along the beam longitudinal axis and there are no any effects of
axial constraint. In the development of the Wagner theory for open section under
torque, it was investigated that the direct stress along the span longitudinal axis is
induced by axial constraint. In Fig (5.1), warping stress is not zero due to axial
constraint at one end and associated shear stress systems induced.

According to Timoshenko theory of thin-walled | cross-section beam, if a torsion is
applied to unrestrained beam then warp occurs along the beam and angle of rotation is
constant along the beam, then this case is called pure torsion. The shear stresses
distribution is induced around profile due to pure torsion and it is the same for all
section. In addition, Timoshenko explained that “For a beam of thin-walled open
section it can be assumed with reasonable accuracy that the shearing stress at any
point is parallel to the corresponding tangent to the middle line of the cross section and
is proportional to the distance from that line” see Fig (4.5). Furthermore, it has been
explained by Saint-Venant and Bredt-Batho torsion theories and Wagner, Vlasov’s
torsion bending theories. Also, some research has been done by Loughlan, J., Ata, M.,
Gotluru, B. P., Schafer, B. W. and Pekoz, T., (see chapter 2).

In chapter (5); the theoretical analysis has been executed for a thin-walled channel
cantilever beam subjected to restrained torsional loading by calculating warping
displacement (primary warping), warping stress, angle of twist, warping shear flow and
location of the shear centre, which depends on type of the cross section as indicated in
appendix (A). In addition in chapter (6); finite element analysis has been carried out for
analysis thin-walled channel cantilever beam subjected to restrain torsional loading.

Also, the theoretical and finite element results are compared and discussed in chapter

).



1.2 Aim and objectives of the project
The aims of this dissertation are to study the analysis of the thin-walled structural form
of single cell open section beam by determining stresses, shear flow constraint and
displacements produced by restrained torsion, and investigate the effects of axial
constraint on channel section cantilever beam. Direct and shear stress systems in open
section beams are also modified by axial constraint.
The main objectives of the project are
e To study and research on thin-walled open section cantilever beam subject to
restrained torsional loading and describe torsion under axial constraint.
e To design suitable cross section due to torsion bending and gain a better
understanding of thin walled open beam under restrained torsion.

e To analysis and validate theoretical and finite element data.

1.3 Research Methodology

This project involves the theoretical analysis of the thin-walled channel cantilever beam
under restrained torsional loading; the finite element program Strand 7 was used. The
structure was simplified and material properties assumed, in order to obtain results of
the warping stresses, shear flow, an angle of twist and displacements occurring in the
structure. Also, to compare theoretical and Strand 7 results, including list of tables and

graphs.
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Chapter 2: Literature review

2.1 Saint-Venant and Bredt-Batho torsion theories

The theory of St. Venant is a generalisation of the problem of twisting of a circular
shaft. A twisting of a shaft without restrain, does not produce any longitudinal stresses
(compressions or tensions), but only pure shear stresses will be induced and the
maximum value of shear stress occurs at the surface of the wall around section of the
beam. The longitudinal warping stress is not induced, which is called free warping.
Free warping at the cross section is referring to Saint-Venant’s assumption; it is that
when a torque applies on any cross section then it does remain undistorted in their own
planes. The work of Saint-Venant (1853) revealed the classical torsion theory to the
French Academy of Science. Bach, C. in (1909), is revealed that the classical torsion
assumption will not determine warping stresses. Hence, the shear centre will not be
coincided with the centroid of the section.

Also Saint-Venant investigated that the rate of twist for uniform torsion along the length
of the section beam is constant and there is no longitudinal axial constraint affects on
the cross section of the beam and warping is free along whole the beam.

The significant principle of St. Venant is that while statically equivalent systems of
forces acting on a body produce largely different local effects the stresses at sections

distant from the surface of loading are essentially the same.

2.2 Wagner theory

Wagner assumption for thin walled arbitrary section under restrained torsion exposed
that the cross section remains undistorted and the shear stress and strain at the central
line of the wall cross section is negligible except shear load.

Wagner developed a general theory of flexural torsional buckling and produced that if a
thin-walled open section beam was subjected to restrained torsion then warping
deformation is induced and warping is not longer constant at any point in the cross

section. Thus, direct stress will be induced in longitudinal direction of the beam.



Furthermore, bending and torsional deformation occur around rotation centre due to
generate torsional moment by apply shear load at any point (except centre of twist
point) of thin-walled open cross section of the beam. However, if the force applies to
the centre of twist point then bending deformation will be occurred at the section and

torsional deformation will not be induced, (1929).

2.3 Timoshenko’s theory and assumption

Timoshenko presented a paper on the effects of warping torsion in I-beam. In some
cases Timoshenko explained and established that where the conditions are such as to
cause one or more cross sections to remain plane and the question arises as to how
such prevention of warping affects, the angle of twist and distribution of stresses. When
a thin-walled open cross section subjected to torsion then warping will prevent by
bending of the flange and depending on the rigidity of the flange. A simple case of this
is I-beam which is twisted by a couple applied at the middle and beam is supported at
the ends. From symmetry, the cross-section of the web at the middle I-beam must
remain plane during twist and the consequent rotation of this cross-section with respect
to the end cross-section is accompanied by bending of the flange. Timoshenko
assumption for a thin-walled open section beam, it is assumed that the thicknesses of
the flanges and of the web are small so that the stresses due to bending of these parts
in the directions perpendicular to their surfaces can be neglected. In such a case, the
action between the upper flange and the web is represented only by shearing stresses.
These stresses produce bending and compression on the flange, (1905). Also,
Timoshenko’s and Goodier did research on elastic theory of a member subjected to

torsion (1970).

2.4 Previous studies for open section beam under warping torsion

N S TRAHAIR (2011) studied on the torsion and buckling behaviour of beams which
derive from a theory developed by Wagner, who extended Timoshenko’s treatment of
the elastic buckling of | section beams and columns to members of a general thin-

walled open cross-section. The first-order Wagner effect leads to the torsional buckling
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of cruciform columns, and modifies the flexural torsional buckling of monosymmetric
beams, cantilevers, and arches. Theoretical predictions have been confirmed by test
results. The second-order Wagner effect becomes important at large twist rotations.
While large twist rotations do not occur in well-designed structures, the existence of the
second-order Wagner effect shows that the post buckling of beams is imperfection
insensitive, suggests that the design strengths of very slender beams are equal to their
minor axis strengths, and provides assurance that approximate plastic collapse
analyses of torsion will be conservative.

Argyris, J. H. and Dunne, P. C showed that the calculation of the shear stress
distribution at a built-in end is a relatively simple problem in that the solution is obtained
for arbitrary beam sections and loading condition by statics. The determination of
stress distributions along the length of the beam is a more complex problem. This
stress, for the section case are shown to be the sum of the generalized Bredt-Batho
stresses plus stresses due to systems of self-equilibrating end loads. For a beam
supporting shear loads the resulting complex stress system may be similarly expressed
as the sum of the Engineer’s theory stresses plus stresses caused by systems of self-
equilibrating end loads. In both cases the basic systems of Bredt-Batho and Engineer’s
theory stresses are statically equivalent to applied loading (1949).

St. Venant development on a member subjected to torsion had been improved and
extended by Seaburg & Heins (1963), Timoshenko & Goodier (1970), Bradford &
Trahair (1991), and Johnson & Salmon (1996) investigated that total torsional
resistance of thin-walled open section beam under restrained torsion is equal to the
sum of uniform torsion due to St. Venant theory and nonuniform torsion due Wagner &
Vlasov theories and assumptions.

Galambos did research on St. Venant classical approach development, that maximum
shear stress occur at the surface of the wall cross section and its proportional to the
maximum thickness of the cross section and first derivative of angle of twist (1968).
The effect of axial constraint on beams of an open section is similar to the constraint of

closed section beams in that the free warping is restricted and self-equilibrating stress
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systems are induced; the analysis is however, based on a different approach. In fact
two methods are in use; the first and oldest is the torsion bending theory of Wagner
(1929) and Kappus (1937), whilst a more modern treatment is due to Vlasov (1961),
which is applicable to a variety of loading conditions. Vlasov’'s work has been
conveniently summarized by Zbirohowski-Koscia (1967). Either method is capable of
analysing beams of arbitrary section, although Vlasov's method has the added
advantage of allowing applied loading systems other than pure torsion to be
considered. The theory and results for open section beams presented in B.C.S.A

publication No.31 relies on Vlasov’s approach.

2.5 Vlasov’s theory

Vlasov development and theory about stress distribution of thin walled open cross
section beam, if a beam subjected to bending and twisting then a different type of
stress will be induced as; (a) Shear stress occur around profile due to St. Venant
theory. (b) Shear stress will induce due to restrained on end of the beam (warping
restraint). (c) Axial stress around profile along the beam due to warping restraint. The
major value will occur at different point of the cross section and depends on the shape
of the cross section and thickness of the wall. The stress due to warping restraint can
be neglected; this is only applied for closed section and solid section. This is because
the torsion constant in closed section is of extremely large value due to massive value
of enclosed area in closed section. Also, Vlasov developed stiffness matrix formula
(see appendix E).

Vlasov’s theory is based on the assumption that the outline of a section of a thin-walled
beam remains unchanged under an action of external loading. It means that the
dimension and angles between the flanges and the web remains unchanged, (1941).
According to Zbirohowski-Koscia, K. (1967), that “a shear stress in a fibre of a thin-
walled beam caused by a flexural twist is equal to the product of this flexural twist
multiplied by the sectorial statical moment of this point and divided by the wall

thickness (at this point) and the principal sectorial moment of inertia”.
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2.6 Loughlan, J. and Ata, M. research

The analysis procedure was carried out for the restrained torsional response of an
open section carbon fibre composite beam (1995). The method is used to modify
torsion theory between isotropic and non isotropic material for the composite beam and
to determine the behaviour stiffness of the beam under St. Venant and Warping torsion
using the suitable comparable engineering elastic constants of the composite material.
The theoretical results compared with finite element results for warping displacement
and warping stress along the beam and around cross-section, and the rotation along
the beam. The model built-up for Z-section beam which is restrained at one end and
free in other end then applied torque at the free end of the beam. The warping shear

flow results at mid-span have been drawn on the graph which is illustrated in Fig. (2.1)

Restrained Torsion
All [(45/-45),]¢
Warping and St. Venant Shear Flow Distribution Round the Section

| T | T T T T 115
oL U L S
—tt——1——F—4+——1——

s-axis (mm)

¥W: FE. 72 Elem. O W: FE. 384 Elem. —W: THEORY

AV. FE. 72 Elem. - 'V: THEORY
T=10000 N mm, at z=250 mm
W: Warping shear flow , V: St. Vanant shear flow

Figure 2.1 Warping and St. Venant shear flow distribution round the Z-section subjected
to restrained torsion.

Source: From reference (36) by Loughlan, J. and Ata, M. (1995).

In Fig (2.1); it is clear that shear flow around web is varies linearly and zero at centre of
the web but shear flow is parabolic at the flange and shows that the maximum value
occurs at the middle of the flange section.
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2.7 Gotluru, B. P., Schafer, B. W. and Pekoz, T. research

The analysis procedure was carried out for the behaviour of thin-walled cold-formed
steel beams which has lipped channel sections where the centroid and shear center do
not coincide, under torsion and bending (2000). Torgue is induced due to transverse
load, which is applied away from the shear centre. Hence, warping induce in the beam.
The studies of lateral torsional buckling and warping stress distributions have been
analysed for a simply unbraced supported beam with two points loading applied at the
flange-web junction.

LB denotes the local buckling and LTB for lateral torsional buckling. In Fig (2.2) it’s
clear when the rotation increases the local buckling load decreased and lateral
torsional buckling increases. When the load increase the beam starts to rotate
gradually and the horizontal displacement occurs so lateral torsional buckling start to
develop and the failure is started by yielding of the material. The beam passes through

huge rotation before failure.

1.4 -
A oem
124 - i
N - NPT S  ———ABAQUS
@ ————CU-BEAM
= 0.8 s — I —— ==& --CU-FSM LB
o aen T I
- A fm CU-FSM LTB
= 0.6 f--3 — T — o
S Tt /
O -
i
o4 +— e B e
A
0.2 — -
0 r T T . T T
(0] 0.2 0.4 0.6 0.8 1 1.2 1.4
Rotation (rad)
Fig. 10. C14U — local and lateral-torsional buckling analysis by finite strip method.

Figure 2.2 Local and lateral-torsional buckling analysis by finite strip method.

Source: From reference (8) by Gotluru, B. P., Schafer, B. W. and Pekoz, T. (2000).
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Chapter 3: Familiarisation of the software

Finite element modelling (FEM) software, Strand7 has been used to model a 1.2m
rectangular beam which is fixed at one end and free at the other end. The breadth of

the beam is 50mm and depth is 150mm. There is a load of 1 KN acting downwards at

the free end and the Young’s Modulus, E is 200 KN/mm2 and Poisson’s ratio, v = 0.3.

150 mm

I 1.2m 1

—-—|50 mm |-—

Figure 3.1 Cantilever beam with point load at the free end with its section.
3.1 Problem Formulation
The beam is modelled by apply five different mesh densities as shown in section (3.3)
where mesh 1 and mesh 2 consist of one element, mesh 3 consists of four elements,
mesh 4 consists of eight elements and mesh 5 consists of 16 elements. The five
meshes are modelled in Strand7 software and are run in order to obtain the analysis
results. When zero error is obtained from the solver, it means that the beam is
successfully modelled.
The values of deflection, bending stress and shear stress along the beam surface and
at mid-span are able to obtain from the listing menu for each mesh. The results are
shown in chapter (6). In order to check that these results are good, theoretical
calculations are done. Theoretical calculation for the deflection on the top surface of
the beam is done using Macaulay’s method, the bending stress is calculated using the
bending stress formula and shear stress is calculated using shear stress formula. All
the theoretical results are shown in the following section (3.2).
Further modelling has been performed to get more results for comparison. Mesh 5
consists of 16 elements. Therefore, for the new model, a mesh with 32 elements was

13
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considered and the model was run and the results were compared to the results
obtained for the previous meshes and with the theoretical results.
Tables and graphs in chapter (6) and summarize all the results obtained from the

Strand7 modelling and from theoretical results are discussed in chapter (7).

3.2 Theoretical Results
In this section, hand calculations have been carried out to calculate the vertical
deflection, the bending stress and the shear stress of a cantilever beam. These

theoretical results will then be used to compare with the modelling results in chapter

).

3.2.1 Vertical deflection on top surface of beam

The vertical deflection is going to be calculated using Macaulay’s method.

12m |

Bending moment is considered from the free end, as then the reactions at the fixed end

need not to be determined.

f 12 m i

y

Moment, M =-1 (1.2 —z) valid throughout the beam span 0 <z < 1.2

Moment curvature equation:

14



Substituting the moment expression into the moment curvature equation:

dzy:_
dz?

El M =1(1.2 - z)

Integrating with respect toZ, gives the slope equation:

El ﬂ =-051.2-2)>+A
dz
Integrating with respect toZ, gives the deflection equation:

Ely =0.167(1.2-2)° + Az+B

When z = 0 (at the fixed end), the slope, % = 0. From the slope equation:
El dy =-051.2-2)*>+A
dz
0=-05(1.2-0)*+A
Therefore, A = 0.72
Substituting the constant A in the deflection equation, gives
Ely =0.167(1.2-2)% +0.72z + B
When z = 0 (at the fixed end), the deflection, y =0
0=0.167(1.2)® +0.72(0) + B

B =-0.2886

Thus, the slope and deflection equations are given as:

El @ _ —-0.5(1.2-2)*+0.72
dz

Ely =0.167(1.2—z)* +0.72z — 0.2886

By inspection, the maximum deflection will occur at the free end, where z = 1.2m:

Ely,, =0.167(1.2-1.2)% +0.72(1.2) — 0.2886

15



Ely,, =0.5754
Calculation of EI value, given E = ZOOKN/mmZ, b =50 mm and d = 150mm

_bd® 50x150°
12

I =14.1x10°mm*

_ 200x14.1x10°

0° = 2.82x10°kNm’

El

05754 0.5754

Therefore, y,,, = T e 2.04x10*m = 0.204mm
. X

Ely =0.167(1.2— z)3 +0.72z2 - 0.2886
Where z = Om:
Ely = 0.167(1.2)3 +0-0.2886

Deflection, y =0

Where z = 0.15m:
Ely =0.167(1.2— 0.15)3 +(0.72x0.15) — 0.2886
Ely =0.0127

Deflection, y = 0.0045mm

Where z = 0.3m:
Ely =0.167(1.2—0.3)% +(0.72x0.3) — 0.2886
Ely =0.0491

Deflection, y = 0.0174mm

Where z = 0.45m:
Ely = 0.167(1.2 - 0.45)° + (0.72 x 0.45) — 0.2886
Ely = 0.1059

Deflection, y = 0.0376mm

Where z = 0.6m:
Ely =0.167(1.2— 0.6)3 +(0.72x0.6) —0.2886

Ely =0.179
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Deflection, y = 0.0635mm

Where z = 0.75m:
Ely = 0.167(1.2—0.75)° +(0.72x0.75) — 0.2886
Ely = 0.2666

Deflection, y = 0.0945mm

Where z = 0.9m:

Ely =0.167(1.2—0.9)° +(0.72x 0.9) — 0.2886

Ely = 0.3665

Deflection, y = 0.13mm

Where z = 1.05m:

Ely =0.167(1.2-1.05)° + (0.72x1.05) — 0.2886

Ely = 0.4706

Deflection, y = 0.1668mm

Following the same procedure, the deflection at different distance along the top surface

of the beam is calculated and shown in the Table (3.1).

Table 3.1 Theoretical deflections along the span of the cantilever beam.

Distance, Z (mm) | Deflection, y (mm)

0 0.0000
75 0.0010
150 0.0045
225 0.0100
300 0.0174
375 0.0270
450 0.0376
525 0.0500
600 0.0635
675 0.0790
750 0.0945
825 0.1120
900 0.1300
975 0.1480
1050 0.1668
1125 0.1850
1200 0.2040
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Thoretical Deflection VS. Distance

0.25

0.2

0.15

=
[N

Deflection (mm)

0.05

e

0 75 150 225 300 375 450 525 600 675 750 825 900 975 105011251200

Distance (mm)

Figure 3.2 Deflection results along the span of the cantilever beam.

3.2.2 Bending Stress on top surface of the beam

The bending stress will occur along the centre of the beam i.e. at depth, y = 75mm.
The bending stress, o will be calculated for different distance, z starting from the free
end where z = 0. The longitudinal stress g,, is zero at the end of the cantilever z = 0.

The bending stress directly is proportional to the vertical distance from the neutral axis,
and thus the stress will vary linearly from the top to the bottom surface, with a zero

stress at the neutral axis.

Bending stress, o = % = ?
Where z = 0 mm, G=M= 0 MPa
14.1x10

Where z = 150 mm, o = 2200 10XT5 _ g yypg
14.1x10

Where z = 300 mm, o = 2000x300x75_ ) /0
14.1x10°

Where 7 = 450 mm, o = 000X 490x75_, \\ b,
14.1x10°

Where z = 600 mm, o = 100060075 = 3.2 MPa
14.1x10°
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1000 x 750 x 75

Where z = 750 mm, o = =4.0 MPa
14.1x10°
Where z = 900 mm, o = 2000%300x75 _ o\ /h,
14.1x10°
Where z = 1050 mm, o = 2000x1050x75 _ o o b
14.1x10°
Where z = 1200 mm, o = 000x1200x75 _ o /4,
14.1x10°

Following the same procedure, the bending stress at different distance along the top
surface of the beam is calculated and shown in the Table (3.2).

Table 3.2 Theoretical bending stresses along the cantilever beam.

Distance, z (mm) | Bending stress, a (MPa)

0 0.00

75 0.40
150 0.80
225 1.20
300 1.60
375 2.00
450 2.40
525 2.80
600 3.20
675 3.60
750 4.00
825 4.40
900 4.80
975 5.20
1050 5.60
1125 6.00
1200 6.40

3.2.3 Bending Stress of the cross-section area at mid-span of the beam

Using the same method for bending stress as section 3.2.2, the bending stress at mid-
span is calculated. Here, value of distance, Z remains 600 mm (mid-span) and value of

the beam depth, y changes. It will be seen that the top and bottom surfaces of the

beamaty = J_r% d are free both of normal stress ( g,,-, ) and of shear stress.

Bending stress, o = @ _ ?

Where y =-75mm, o = 1000 600> =75 =-3.2 MPa

14.1x10°
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1000 % 600x —37.5 _

Where y =-37.5mm, o = 5 =-1.6 MPa
14.1x10
Where y =0mm, o =M= 0 MPa
14.1x10
Where y = 37.5 mm, o = “200X000X375 _y 5 p,
14.1x10
Where y = 75 mm, o = 200 000XT5 _ 5 5 4yp,
14.1x10

Thoretical Bending stress VS. Distance
7
6.4
6
5.6
E 5 5.2
< 4.8
N—r
) 4.4
o 4 4
= 3.6
3.2
o 3
£ 2.8
2 2.4
2 2 2
1.6
1.2
1
0.8
0.4
0 6
0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050 1125 1200
Distance (mm)

Figure 3.3 Bending stress results along the span of the cantilever beam.

Table 3.3 Theoretical bending stresses cross-section area at mid-span of the cantilever

beam.
Depth, y (mm) Bending stress, o (MPa)
-75 -3.2
-37.5 -1.6
0 0
37.5 1.6
75 3.2
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Bending stress (MPa)

Bending stress & Deflection VS. Distance

6.8 0.22
6.4 o
) .
5.6 0.18

5.2
g 0.16
4.4 0.14
4
36 0.12
2 01
28
» 0.08
2 0.06
16
12 0.04
0.8 0.02
04 |
0 0
0 150 300 450 600 750 900 1050 1200

Distance (mm)

Deflection {(mm)

== Bending

stress
=¢—Deflection

Figure 3.4 Bending stress and deflection along the span of the cantilever beam.
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Bending stress VS. Depth
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Figure 3.5 Bending stress of the cross-section area at mid-span of the cantilever beam.

21




3.2.4 Shear Stress of the cross-section area at mid-span of the beam

Shear stress, 7 =

Where,
F

A

Considering this first case:

Ib

. Shear force

: Width of beam

Shear stress (T);

Fy

. Cross-sectional area

: Second moment of area

__ 1000 (50 37.5) x56.25
14.1x10° x50

Second case:

Shear stress (T);

__ 1000 (50> 75) x 37.5

14.1x10° x50

=0.15 MPa

=0.197 MPa

. Distance of centroid from neutral axis
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Third case;

Shear stress (T);

1000 (50 37.5) x ~56.25

=-0.15

14.1x10° x50

Fourth case:

Shear stress (T);

L 1000x (50x 75) x —37.5
14.1x10° x50

MPa

=-0.197 MPa

At depth = 0 mm, shear stress, T =0

75

375

neutral

axis

-3 D pemerees

B .
ORI R 1 N IE )
+ * ]y
DODISIEIEIE 3 -Ar A Ar Ay
+ 4+ BEoDG

-56.25

75

319

neutral

axis —————1,

3750

R e A e e T e
4 kb b bk b4 d
A b bR bRk
TR T T T T T T
Ry

R

— ———

-15

Table 3.4 Theoretical shear stresses cross-section area at mid-span of the cantilever

beam.

Depth, y (mm)

Shear stress, T (MPa)

-75

0

-37.5

-0.150

0

-0.197

37.5

-0.150

75

0
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Shear stress (MPa)

Shear stress VS. Depth
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Figure 3.6 Shear stresses of the cross-section area at mid-span of the cantilever beam.
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Figure 3.7 Bending stress and shear stress of the cross-section area at mid-span of

the cantilever beam.
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3.3 Scaled diagrams of the mesh densities

Mesh 1: One 4-node element

—_
[ ]

Figure 3.8 Model (1) one 4-node element (2D).

Mesh 2: One 8-node element

-
(2%
(&)

Figure 3.9 Model (2) one 8-node element (2D).

Mesh 3: Four 8-node element

(¥

1 9 10 1 2 12 13 14

Figure 3.10 Model (3) four 8-node element (2D).

Mesh 4: Eight 8-node element

)
—
w
—
s
w
©

1 9 10 11 2 1
Figure 3.11 Model (4) eight 8-node element (2D).



Mesh 5: Sixteen 8-node element

|

1 9 10 n 12 13 14 1% 2 16
Figure 3.12 Model (5) sixteen 8-node element (2D).

Mesh own: Thirty-two 8-node element

1 B 20 28 ¥ 4 8 5H 2 69 74 8

Figure 3.13 (Own model) thirty-two 8-node element (2D).
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CHAPTER (4)

THIN-WALLED AN OPEN SECTION BEAM

UNDER RESTRAINED TORSION
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Chapter 4: Thin-walled an open section beam under

restrained torsion

4.1 Thin-walled open section beam properties and behaviour under

restrained torsion
Thin-walled sections are such that the structural thickness is everywhere small as
compared with the overall dimensions of the section. There is no clearly defined kind of
demarcation between thin-walled and thick-walled sections, it is suggested that thin-

walled theory may be applied with reasonable accuracy to sections if:

LA S —— (4.1)

Where t,,., is the maximum thickness of the section and b is a typical cross-sectional
dimension.
Most structures in civil engineering may be regarded as having either a thick-walled or

thin-walled section as shown in Fig (4.1), for an I-section and Channel section beam.

(@) (b)

Figure 4.1 (a) Thick beam section, (b) Thin-walled beam
section.

The analysis of the thin-walled open cross section depends on the boundary condition
of the member and it is obtained by determining primary warping, warping stress, shear
flow and angle of rotation. There are two types of torsion; (a) unrestrained torsion or
free torsion due to St. Venant & Bredt-Batho theories, (b) restrained torsion or warping

torsion due to Wagner & Vlasov theories.
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In the unrestrained torsion, there is no axial constraint in longitudinal axis. The cross
section is free to warp completely and longitudinal warping stress is not induced around
profile along the member. Also, the angle of twist remains constant along the member.
In the restrained torsion, if the end of a torsion member is restrained then the cross
section is prevented from warping, and warping stress is induced around profile along
the member. Also, the angle of twist is not longer constant along the member.

The percentage of the torque carried in each way depends on the dimensions of the
cross section and the length of the member.

Restrained warping will be significant during the twisting of a thin-walled beam when
the applied twisting moment or the boundary conditions create an internal twisting

moment that varies along the beam axis.

4.2 Shear center of thin-walled an open section beam

Loading on a beam will usually produce combined bending and twisting. It is possible
to locate a point in the cross-sectional plane through which the resultant forces must
pass if there is to be no twisting. This point is called shear center.

When a beam bends without twisting, due to some external load system, shearing
stresses are set up on the cross sections of the beam. The centroid of this external
shear force system is often referred to as the shear center for the particular section.
The resultant external shear load at this section must pass through the shear centre of
the section if twist of the section is to be prevented. Thus, if the shear centre is known,
it is possible to represent the external load influences by two systems, one that causes
flexure and other which causes only twist. It is necessary to know or to be able to
determine the position of the shear centre of all types of section. For some cross
section which is illustrated in Fig (4.2) the position of the shear centre is at the
intersection of the walls. Also, where a section has axis of symmetry, then the shear
centre must lie on this axis shown in Fig (4.3). The position of the shear centre of

channel cross section is determined by calculating e value, as illustrated in Fig (4.4).
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shear centre shear centre

shear centre

Figure 4.2 Shear centre position for angle, cruciform, and T- sections.

Figure 4.3 Shear centre will lie on the axis symmetry for channel, T- and Z- sections.

YaACentroid of
the section
Shear centre G
Re————+F+—— h

X

Y 3b°t,

e=——
6bt, +ht,,
>

Figure 4.4 Location of channel shear centre.
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4.3 Torsion of thin-walled an open section beam

Approximate expressions for the shear distribution and rate of twist in a thin-walled
open section beam are based on the derivation of a thin rectangular strip, the
membrane analogy and St. Venant warping functions.

The assumptions on which the theory is based are similar to those for the torsion of a
closed section in that the cross section is assumed not to distort in its own plane and
that stresses, other than St. Venant shear stresses, are assumed constant across the
wall thickness. Theses stresses would in fact be axial constraint stresses which are
explained in section (4.4 & 4.6).

The shear stress distribution in a thin-walled open section beam subjected to a torque

as shown in Fig (4.5) has two possible components, f, in the direction of the tangent

to the section wall and f,,, normal to the tangent. It may be shown that

f = zend—g, f =0 - (4.2)
dz

maximum
b
i Shear stress

Figure 4.5 (a) Torsion of an open section beam, (b) Shear stress distribution across the
wall of an open section beam subjected to torsion.
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Giving the linear distribution of f,, across the thickness of the section wall shown in Fig

4.5(b). The maximum value of f,; occurs at the inner and outer surfaces of the wall
— 4t i

wheren = + !/, andis

T e (43)

dz

The shear stress varies linearly across the wall thickness, and zero at mid-plane.
The rate of twist dg/dz is expressed in terms of the applied torque, the shear modulus

G and the torsion constant J by the relationship;

de

T=GJ - S
3
J= % ------ (4.5)

The shear modulus (G) depends on Poisson’s ration, Young’'s modulus and Section

properties, which expressed in Eq. (4.6)

G- E - (4.6)

4.4 Warping of thin-walled an open section beam under restrained torsion

Warping is the displacement along the beam longitudinal axis and it is a difficult
phenomenon to visualize. In the general case of open cross-section warping takes
place, i.e., the cross-section does not remain plane. There are two types of warping
associated with open sections; primary warping, in which the complete cross-section
suffers displacements normal to its plane, and secondary warping, which involves
longitudinal displacements across the thickness of the walls of the section. For thin-
walled sections secondary warping is negligibly small. However primary warping
displacements are relatively large and any form of axial constraint in which this primary
warping is restrained produces significant values of direct stress and changes in shear

stress.
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It has been showed in Section (4.3) that the torsion of a thin-walled, open section
axially unrestrained beam induces a constant rate of twist along the length of the beam
and a shear stress distribution which varies linearly across the thickness of the walls of

the beam and is zero at the middle plane see Fig 4.5(b).

a b

Figure 4.6 (a) Torsion of a thin-walled I-section beam, (b) Warping of I-section
under uniform twisting moment showing undistorted shape of flanges.

It follows that, although the beam cross-section and middle plane warp, there is no
shear distortion of the middle plane. This is clearly demonstrated in Fig 4.6(b), where
the middle plane of each flange of the I-section remains rectangular, although twisted,
after torsion. In Fig 4.7(a) it has been shown that the warping of the one end of the
beam is restrained. This restraint causes some longitudinal strains and stresses. The
warping is not induced at the fix end of the beam due to the effect of applying restraint
to one end of the beam. Also, the flange will move from its plane and will bend into the
shape shown in Fig 4.7(b). In addition, the angle of rotation will vary and is zero at fix
end. A total twisting moment is a sum of a pure St. Venant twist and restrained warping
torsion, which is expressed below;

T

Total

=T, +T,
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d
Where T), = GJ d—e from the unrestrained torsion of open section beams, but in which
Z

dg . , . , , ,
d_e is not constant and T, is obtained from a consideration of the bending of the
Z

flanges. In both the Wagner and Vlasov methods Eq. (4.7) is expressed as a second

d d
order differential equation in d—g from which d—g is obtained for a particular beam having
zZ Z

given loading and support conditions.

a b

Figure 4.7 (a) Thin-walled I-section cantilever beam subjected to a torque, (b)
Bending effect of axial constraint on flanges of I-section beam subjected
to restrained torsion.

If the warping is restrained, warping normal stresses will be induced. These warping
normal stresses will induce warping shears, which will provide a tensional restraining
moment. This moment, defined as a warping tensional moment, in addition to the pure
tensional moment provide equilibrium in the system.

The combination of St. Vanent and warping torsion gives a model for torsion which can
give reasonable predictions of behaviour.

The primary warping (W) round a section profile is determined by Eq. (4.7);
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W = W(s)?j—f --------- (4.7)

The primary warping in opens sections depends on the rate of twist of the section and

the section property known as the sectorial coordinate, w(s).

Figure 4.8 Warping of an open section beam.

The sectorial coordinate w(s) round section beam is determined by Eq. (4.8)

w(s) = j' P.ds (4.8)

Megson, T. H. G, (1974) explained that “The integral in the expression for primary
warping represents twice the area A; swept out by a generator rotating about the

centre of twist (R) from the point of zero warping” as shown in Fig (4.8). Thus the

primary warping may be written as

do
W =-2A,— - (4.9
A &z (4.9)
Or in term of the applied torque
W =-2A T (4.10)
" GJ '

The sign convention adopted for Ay is that perpendicular P, from the centre of twist R
to the tangent at any point is positive in sign if movement in the positive direction of s of

the foot of P along the tangent causes anti-clockwise rotation about (R).
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Secondary warping becomes significant in sections (e.g. T-section & angle section)

where their primary warping is zero.
The secondary displacement warping (W™) longitudinal across the thickness of the

walls of the section is determined by Eq. (4.11) and the sectorial computed by Eq.

(4.12)
W =w' (s)d—e --------- (4.11)

dz
w(s) = Iann --------- - (4.12)

The shear centre location for channel section is determined by Eq. (4.13)

3b°t,
e= (4.13)
bt +ht,,
Torsion bending constant is determined by Eq. (4.14) or (4.15)
I, = j O ] — (4.14)
1, = [[W(s)I't ds ----verem- (4.15)
4.5 Rate of twist in thin-walled open section beam under torsion
The rate of twist in open section is determined by Eq. (4.16)
Q:L 1- cosh (L -2) (4.16)
dz GJ cosh L

The first term in Eqg. (4.16) is seen to be the rate of twist derived from the St. Venant
torsion theory. The hyperbolic second term is therefore modification introduced by the
axial constraint.

According to the Vlasov torsion-bending theory, (1) value is determined from stiffness

matrix equations as follow;

GJ
= 4.17
yzi el (4.17)

w

Integrating Equation (4.16) with respect to z, gives:
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g:L Z+Slnhy(L—Z) LK
GJ pcosh

At the built-in end, wherez=0, 6 = 0:

H:L O+—Smh'uL +K
GJ ucosh ul

Koo sinh 4L
N cosh gl

And so

0 T {ZJrsmhy(L—z)_ sinh zlL } _(4.18)

T GJ ucosh . pcosh ul

The maximum twist occurs at the free end where, z = L. So from equation (4.19)

_TL {1_ tanh ,uL} (4.19)

™G y7. %

4.6 Warping stress; calculations

: . . : : dg .
According to Wagner torsion-bending theory, when axial constraints are present d—e is
zZ

dw
no longer constant so that the longitudinal strain . is not zero and direct stresses are

induced, given by Eq. (4.20)

2
Z_VZV —w(s) 32‘29 (4.20)

The rate of twist is no longer constant along the beam due to induced warping strain.

From Hook’s law, the warping stress is defined as:

e _gdw (4.21)

And substituting for the strain

2
f, = Ew(s) d ? (4.22)
dz

The rate of twist is given by Eq. (4.16)
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do _ T 1_cosh,u(L—z)
dz GJ cosh gL

d
And the second order of d—9
Z

d’6 T sinh(L-2)

a2z Gi" cosh zl
So

. Ew(s)lﬂsmh u(L-2)
GJ cosh zl

The warping stress round the profile at any section, gives by Eq. (4.23)

:EXT_,qumh,u(L—z)

f
G cosh sl

XW(S) (4.23)

4.7 Axial constraint; calculations

When a restriction is happened in any thin walled cross section of the beam due to
discontinuities of the loads then, an axial constraint effect occurs in that section. Thus
axial direct stress arises in longitudinal direction. This direct stresses is proportional to

the longitudinal strain and to the second derivative of angle of twist.

Figure 4.9 Determination of swept area Ag.
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In Fig (4.9); a positive sectorial coordinate starts from the reference line (RA), in
clockwise direction and negative starts from the reference line (RA), in anti-clockwise
direction.

The sectorial coordinate is always from the reference line from zero warping point in
section to shear centre and it depends on the section shape (section properties) and
the location of the shear centre.

It is necessary to have a reference line in order to sweep the sectorial coordinate.

In section 4.4 it has been showed that the primary warping w of a thin-walled beam of
open section was given by Eq. (4.9)

W=—2AR%
VA

d
When axial constraints are present d—g is no longer constant so that the longitudinal
Z

. dw | : )
strain e is not zero and direct stresses are induced, so

dw d2e
=B =2A e (4.24)

The warping stress system must be self-equilibrating since the applied load is a pure

torque. Therefore at any section the resultant end load is zero and

IR B (4.25)

section

2

From Eg. (4.24) and observing that is a function of z only,

Z2

jzAR tds =0 - (4.26)

section
The limits of integration of Eq. (4.26) are as yet unknown since Ay is zero when w is
zero at an unknown value of s. Let
2A; =2A; —2A;
Where Ap, is the area swept out from (s = 0) and A’ is the value of A, at (w = 0), as
shown in Fig (4.9). Then in Eq. (4.26)
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[2A tds —2A; [tas=0

section section

And
[2A, ds
2Ar — section
" '[tds
section
Given
IZAROtds
ZAR — ZAR __ section e (427)
’ '[tds

section
For equilibrium of the element in the z-direction and neglecting body forces, it is

obtained Eq. (4.28)

a—q+tafz
oS oz

Sy P (4.28)

The axial constraint shear flow system (. is in equilibrium with the self-equilibrating

direct stress system. Thus from Eq. (4.28)

0S 0z
Hence
aa. __of,
05 0z

Substituting for £, from Eq. (4.24) and noting that ¢ =0whens = 0, then

dt9

q, = j 2A.tds
Now
[ prayds
section
Through the integrations by part
3
T,=—El, ((jtlzf (4.29)
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T,, is termed the torsion bending constant and purely a function of the geometry of the

cross-section.

The total torque, T which is the sum of the St. Venant and the Wagner torsion bending

torque, is then written

3
T=GJ d_6?_ El, d f (4.30)
dz dz
Or
3
d0_GIdo T ., 31
dz® El, dz El,
So
3 —
d f __ T cosh(L—z)y (4.32)
dz El, | cosh(ul)
T;, St. Venant torsion is given by
T, —gyd0 g|p_coshull=2)) (4.33)
dz cosh sl
T.,, Wagner torsion-bending (warping torque) is given by
3 —
T, = £, 40 coshulk=2) (4.34)
dz cosh sl
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CHAPTER (5)

THEORETICAL ANALYSIS FOR

THIN-WALLED CHANNEL SECTION
CANTILEVER BEAM

SUBJECTED TO RESTRAINED TORSION
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Chapter 5: Theoretical analysis for thin-walled channel Section

cantilever beam subjected to torsion

A thin walled singly symmetric channel section cantilevered beam is subjected to
restrained torsional loads as shown in the Fig (5.1). The section has a uniform

thickness of 2 mm.

t = 2 mm uniform

|
|| bx R @ — h=100 mm
|

e

g0 N
1000 mm —b=50mm—
\ goN

Figure 5.1 The dimensions of a channel cantilevered beam under a torque loading.

(Aluminium Alloy :1050 - O); has been chosen for a plate material
Young’s modulus (E) = 69000 MPa
Poisson’s ratio (v) = 0.334

69000
2(1+v) 2(1+0.334)

Shear modulus (G) = = 25862 MPa

Torsion (T)=p X h
Where; p =90 N
Where; h = 100 mm

~ T =90 x 100 = 9000 N.mm
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3b%t,
e=——
ebt, +ht,,

Where; b =50 mm, h = 100 mm, t = 2 mm (uniform thickness)

2
e= 3x507 <2 —18.75mm
(6x50x 2) + (100x 2)

5.1 Sectorial coordinates; calculations

Sectorial coordinate is always calculated from the reference line, from zero warping
point to shear centre. It is necessary to have a reference line in order to sweep the
sectorial coordinate. Sectorial coordinate depends on the section shape and the
location of shear centre. The sectorial zero point is at the intersection of the axis of

symmetry and the profile of the beam.

In element 1-2: 0<s, <50 9
2 p
2 3
1
w(s;) =—2x=x18.75xs,
2 50mm
S W(s,) =—18.75s, _ TSI 100 mm
—3118.?5 mm 1—
Where; s; =0
w, =-18.75x0=0
Where; s; = 50 h— s mm—
w, =—18.75x50 = -937.5mm*  (Linear in - between)
52,
P 2 Q 3 _
In element 2-3: 0<s, <50 T ?
Area R2Q = area RPQ — area RP2 S0 mm
1 1 I‘Sl
= X (1875 + $5) X 50 — ~ x 18.75 x 50 100 mm

I
—R-4 18.75 mm [~

Area R2Q = % X 50x%xS,

— 50 mm—
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1
wW(s,) =-937.5+(2x =x50xs 52
(S,) (><2>< x$,) Cp 22 -
-.W(s,) =-937.5+50s,
50 mm
Where; s, =0
S1
W, = —937.5+50x 0 = -937.5mm? — — 100 mm
- 18.75mm [~
Where; s, =50

b— 50 mm—

w, = -937.5+ (50x50) =1562.5mm’  (Linear in - between)

5.2 Warping (Torsion-Bending) constant; calculations

1, :j[w(s)]ztds

50 50
l, = 2“(—18.7531)2 x2xds, + [ (-9375+50s,) x 2x dsz}
0 0

3150 L0
=2 703.13[i} + 2| 93755 23032) ; =2[29.3x10° +50.9x10° +10.9x10° |
X

0
o1, =1.8x10°mm®

5.3 Torsion-Bending related; calculations

st® 50x2® 100x2° 50x2°
J=Z?: s T g T

e GJ :\/ 25862 x 533 11107 1/mm
El, V69000x1.8x10

=533mm*

4l =1.1x107°x1000=1.1
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5.4 Rate of twist at mid-span; calculations

Where; Z = 500mm

do T {1_ cosh z(L — z)} 9000 [1_ cosh1.1x10°3 (1000—500)}

dz GJ coshuL | 25862x533 cosh1.1
99 _ 510+
dz

5.5 Warping distribution (Primary warping) round the profile; calculations

06
W = W(S)E 9

W =w(s)x2x10™

Where; Z = 500mm T
S1

In element 1-2: 0<s <50 R ’
-~ 18.70mm —

Where; s; =0

w, =-18.75x0=0
W, =0x 2x10™ =0
Where; s; = 50

w, =—18.75x50 = —937.5mm*  (Linear in - between)
W, =-937.5x2x10™* =-0.19mm (Linear in - between)

In element 2-3: 0<s,<50

b=—— 50 mm—+

100 mm

Where; s, =0

w, =—-937.5+50x0 = —937.5mm’

W, =-937.5x2x10* = -0.19mm

51 18.75mm
Where; s, =50

w, = —937.5+ (50x50) =1562.5mm’ (Linear in - between)

W, =1562.5x2x10™* =0.31mm  (Linear in - between)
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The warping displacement round the other half the section will be established by

inspection of the section symmetry as shown in Fig (5.2).

-0.19mm

+0.31 mm

-0.31 mm

+0.19 mm

Figure 5.2 Warping distribution of the channel section cantilevered beam under a torque

loading.

Table 5.1 Warping displacement results at mid-span of the channel section beam

Distance, s (mm) 0 50 100 150 200
Warping, W (mm) | 0.31 -0.19 0.00 0.19 -0.31
Warping displacement VS. Distance
0.4
0.3 Y’“
e 02 0.19
£ \ /\
= \ \
S 0N\ G
a 25 \ 50 75 100 125 150 XQ 200
T -0.1
-0.2 -0.19
-0.3 \.31
-0.4

Distance, s (mm)

Figure 5.3 Warping distribution for the channel section at mid-span.
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5.6 Warping at flange tip—along span; calculations

At fixed end, where; Z =0

00
W =w(s)—
()az

do _ T 1- cosh (L -2)
dz GJ cosh gL

W= [qocoshul=2) X W(S)
GJ cosh ul

9000 [1_ cosh1.1x107 (1000 — z)

- x1562.5
25862 x 533 coshl.1

-3
W :1.02{1_ coshf1.1x107(1000 — z)]}

1.67
Where; Z =0

W =0

Where; Z = 100

coshfl.1x107 (1000 — 100)]
1.67

W :1.02{1— } =0.08mm

Use the same process to calculate the warping displacement values at regular sections
of 100mm. The results are tabulated in table (5.2).

Table 5.2 Warping distribution results for the channel section at flange tip—along span.

Length, Z (mm) Warping, W (mm)

0 0.00
100 0.08
200 0.16
300 0.22
400 0.27
500 0.31
600 0.35
700 0.38
800 0.40
900 0.41
1000 0.41
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Warping displacement VS. Length
0.45

0.4 0.41

0.35

0.3

0.25

Warping, W (mm)

0.2

0.15

0.1

0.05

0 100 200 300 400 500 600 700 800 900 1000 1100
Length, Z (mm)

Figure 5.4 Warping distribution of the channel section along the span.

5.7 Warping stress distribution at top flange tip-along span; calculations

=E)(T_,uxsmh,u(L—z)

f
G cosh zl

xW(S)

w(s)=w,
w, =1562.5mm?

_ 69000 9000x1.1x10° _ sinh g(L ~2)

W= X x1562.5
25862 533 coshl.1

9000x1.1x107° . sinh (L —2)
533 1.67

f, =2.67x x1562.5

f, =46.4x[sinh u(L-2)]
- f, = 46.4xsinh[1.1x10(1000 - 2)|
Where; Z =0

f, = 62N /mm?
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Where; Z = 100

f, =53.8N / mm?

Use the same process to calculate the warping stress values at regular sections of

100mm. The results are tabulated in table (5.3).

Table 5.3 Warping stress results at top flange tip—along span.

Length, Z (mm)

Warping stress, f,,

N/ o)
0 62
100 53.8
200 46.3
300 39.4
400 32.9
500 26.8
600 21.1
700 15.6
800 10.3
900 5.1
1000 0
Warping stress VS. Length
70
co A&

\\53 .
50

40

30

39.4

32.9

Warping stress, fw (N/mm~2)

20

21.1

10

0 100

200 300 400 500

600

Length, Z (mm)

700

800

900

1000

1100

Figure 5.5 Warping stress at top flange tip-along the span of the beam.
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Warping, W (mm)

Warping stress & Warping displacement VS. Length
70 0.45
o0 N\62 T —6410.41 g 4
N \53(8 45 - 035
<E >0 7 0.31
c \ﬁg / 3 - 0.3
\E/ 40 140.47 Love
g 5 7 : <29 - 0.2
0 26,8
3 /o AN il - 0.15
@ / 15,6 - 01
= / 0.08
S 10 : 10.3
= - 0.05
= 5.1
= 0 %o -0
0 100 200 300 400 500 600 700 800 900 10001100
Length, Z (mm)

=== \\/arping stress

e \NArping
displacement

Figure 5.6 Warping stress and warping displacement along-span of the beam.

5.8 Warping stress at the built-in end; calculations

:EXT_,uxsmh,u(L—z)

f,, xW(S)
G J cosh ul
Where; Z =0
£, = B TH S )

"G J coshuL

E Tu
f =—x—"xtanh aL xw(s
w5 L xw(s)

_ 69000 9000x1.1x10~
Y 25862 533

x tanh(1.1) x w(s)

-3
£ =2.67x 2000 X51?;;X10 « tanh(L.1) x W(s)

-, =0.04w(s)

Where; w; =0

f, =0.04x0=0

Where; w, = —937.5 mm?

f,, =0.04x(-937.5) = -37.5N /mm?’
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Where; w; = 1562.5 mm?
f,, = 0.04x(1562.5) = 62.5N / mm*

The warping stress round the other half the section will be established by inspection of

the section symmetry as shown in Fig (5.7), and unit for f,, is N mm2"

-375

\/

+62.5

-62.5

+37.5

Figure 5.7 Warping stress due to restrained torsion round profile at built-in end.

Table 5.4 Warping stress results round profile at built-in end.

Distance, s (mm) 0 50 100 150 200
Warping stress, 62.5 - 375 0.00 37.5 -62.5
fu /. 2)

5.9 Warping stress round profile at mid-span; calculations

At mid-span, where; L = 500 mm

E Tu
f =—x—"xtanh uL xw(s
w55 L x W(s)

4L =1.1x107° x500 =0.55

¢ 69000 9000x1.1x10”
Y 25862 533

x tanh(0.55) x w(s)

-3
f. = 267x 200 Xslééx 107 tanh(0.55) x w(s)
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f,, =0.025W(s)

Where; w; =0

f, =0.025x0=0
Where; w, = —937.5 mm?

f,, =0.025x (-937.5) = —23.4N /mm?’
Where; w; = 1562.5 mm?

f,, = 0.025x (1562.5) = 39.1N / mm®

The warping stress round the other half of the section will be established by inspection

of the section symmetry as shown in Fig (5.8), and unit for f;, is N mm2

-234

+30.1

-301

+234

Figure 5.8 Warping stress due to restrained torsion round profile at mid-span.

Table 5.5 Warping stress results round profile at mid-span.

Distance, s (mm) 0 50 100 150 200
Warping stress, 39.1 -23.4 0.00 23.4 -39.1
fo N/ 2)
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Warping stress at built-in end & mid-span VS. Distance
80

60

40 \
N\
\ =@= At built-in end

0 25 50 100 125 150 h(\ 200 —g—At mid-span

\
\

Warping stress, fw (N/mm~2)
o

Distance, s (mm)

Figure 5.9 Distribution of axial constraint direct stress round section at built-in end and
mid-span of the beam.

5.10 The rotation at flange tip-along span; calculations

Where; Z = 0 (At built-in end)

25862 x533

do T 1- coshu(L—-z) | 9000 1_cosh1.1><10’3(1000—0)
dz GJ cosh ul coshl.1

49 6.53x10‘4{1
dz

_coshfL.1x10°@000)]| _
coshl.1

~.0=0

g_L Z+sinhy(L—z) _Sinh gl
GJ pcoshul  pcosh b

9000 _Z+ sinhp(L-2) sinh1.1
25862x533|  1.1x10°xcoshl.l 1.1x107xcoshl.1

i i -3
- 9= 6.53x10| 2 STNIL1x10°(1000-2)]
1.84x107

727.7}

Where; Z =0

6=0
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Where; Z = 100 mm

sinhL.1x10*(1000-100)]

0=16.53x10"" {100 + 727.7} =1.73x10"° rad

1.84x10°°
7 gy = Orag x@ =1.73x107° x@ =0.099°
T T

Use the same process to calculate the angle of twist values at regular sections of 100
mm. The results are tabulated in table (5.6).

Table 5.6 The angle of twist results at top flange tip—along span.

Length, Z (mm) | Angle of twist, 6, (rad) Angle of twist, 6, (degree)

0 0.00000 0.000
100 0.00173 0.099
200 0.00961 0.551
300 0.02179 1.248
400 0.03762 2.155
500 0.05649 3.237
600 0.07785 4.460
700 0.10116 5.796
800 0.12592 7.215
900 0.15163 8.688
1000 0.17781 10.188

Angle of twist VS. Length

12
g 10 /O_!.D_'IES
D 8.688
S 3
Iz 7.215
E’ 6 5.796
(@]
(;'C;) A 4.46
Z ‘/{.237

2 2 155

1.248
551
0 oo 0-099
0

100 200 300 400 500 600 700 800 900 1000 1100

Length, Z (mm)

Figure 5.10 Angle of twist at top flange tip-along the span of the beam.

55



5.11 Wagner torsion-bending and St. Venant torsion computations along-

span; calculations

T, =GJ (;—9 (St. Venant Torsion)
z

do T {1_ cosh u(L—z)}

dz GJ cosh L

T T {1_ cosh u(L — z)}
cosh L

coshfl.1x103(L - z)]}

T, =9000|1—
coshl.1

Where; Z =0 (At built-in)

,3 _
T =9ooo{1— cosh1.1x10% (1000 O)} o

coshl.1

Where; Z = 100

-3 _
T, 9000 1_cosh1.1><10 (1000 —100) _ 739.6NmmM
coshl.1
3 —
T,=-El, d sz cosh u(L—2) (Warping restraint)
dz cosh gL
-3
T — 9000 coshfl.1x107(1000 - )]
coshl.1
Where; Z =0 (At built-in)
,3 _
T - 9000><cosh1.1><10 (1000-0) — 9000NmM

coshl.1
Where; Z = 100

cosh1.1x107° (1000 —100)
coshl.1

T, =9000x =8260.4Nmm

Use the same process to calculate St. Venant torsion and Warping restraint values at

regular sections of 100mm. The results are tabulated in table (5.7).
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Table 5.7 St. Venant torsion and Wagner torsion-bending values along span.

Length, Z (mm) | St. Venant torsion, T; (N.mm) | Warping restraint, Ty, (N.mm)
0 0 9000
100 739.6 8260.4
200 1379 7620.9
300 1926.4 7073.6
400 2388 6612.1
500 2769.4 6230.6
600 3075.4 5924.6
700 3309.6 5690.4
800 3475 5525.1
900 3573.3 5426.7
1000 3606 5394
St. Venant torsion & Wagner torsion-bending VS. Length
10000
8 9000 L\L
=]
S 8000
2 7000
oy
© 6000
=
o 5000
= =¢—St. Venant torsion (TJ)
© 4000 .
2 WQ—"_‘ =l Warping torque (Tw)
2 3000
=
< 1000
5 0 /
0 100 200 300 400 500 600 700 800 900 1000
Length, Z (mm)

Figure 5.11 St. Venant torsion and Wagner torsion-bending along span of the beam.

Ttotal = T] + TW

Where;

Ttotar = total resistance to torsion

T, = unrestrained torsion

Ty = restrained torsion

Where; Z =0

Tiocar = 0 + 9000 = 9000 N.mm
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] 0

—=—2=0
T ~ 9000

Ty _ 9000
T ~ 9000

T Tw .
Use the same process to calculate (Tiptq; 7] & E3 ) values at regular sections of

100mm. The results are tabulated in table (5.8).

T . .
Table 5.8 ]/T ,TW/T and T;,;4; results for channel section of cantilevered beam.

Length, z Ttotal ﬂ T_W
(mm) (N.mm) T T
0 9000 0.000 1.000
100 9000 0.082 0.918
200 9000 0.153 0.847
300 9000 0.214 0.786
400 9000 0.265 0.735
500 9000 0.308 0.692
600 9000 0.342 0.658
700 9000 0.368 0.632
800 9000 0.386 0.613
900 9000 0.397 0.603
1000 9000 0.401 0.599
7 fb
T

o
e

Tw

[

111
n

Maximum rotation at

free end

Total torque

T, due to ST. Venant Torsion

& Ty, due to Warping Torsion

Figure 5.12 Distribution of the twist (8), Torsional moment (T;) & Warping moment
(Tw) in the channel cantilever beam under restrained torsion.

58




In Fig (5.11 & 5.12); it can be seen that at built-in end of the beam the St. Venant
torsion is zero, and it is maximum at free end of the beam but Warping torsion is the
maximum value at fix-end and it is zero at free end of the channel cantilever beam.
Moreover, the St. Venant part of the torsional moment is proportional to the first
derivative of the angle of twist; the warping torsion on the other hands is proportional to
the third derivative of the angle of twist. The angle of twist is the maximum value at free

end of the channel cantilever beam.

5.12 Axial constraint shear flow round profile; calculations

SS.

50 mm y

—18.75 mm [~

G X
1 e ] S X h = 100 mm
R\I 3

2 1 0

S1

=—bh = 50 mm—-

Figure 5.13 Axial constraint shears flow distribution round cross-section of the beam.

5.12.1 At mid-span (where Z = 500mm)

@0

a-=E dz®

S
IZAEt ds (Axial constraint shear flow)
0

d¢ T |coshu(L-2)
dz>  El,| cosh(zl)
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d’o 9000 cosh[1.1x10* (1000 —500)]
dz® 69000x1.8x 108

cosh (1.1)
3
d—f =-5x107"°
dz

Sectorial coordinates calculations; from Fig (5.13):

th h
WSZZAE,OZ_([EdSZES For0<s<b
WS:2AEVO:gb+(—)feds:%—e(s—b) Forb<s<b+h
b
bh ¢ h h
W: = 2Ac, :7—e(b+h—b)+ IEdSZE(S_ZE_h) Forb+h<s<2b+h

b+h

Integrating by part;

2b+h
1

28 = [2A¢c,dA

0

1 bh b+h bh 2b+hh
2A = —std. + ——e(s=b) |tds+ | —(s—2e—h)tds
A 2bt+ht{-£2 : Hz ( )} I2( ) }

b+h
.'.2A’E=g(b—e)

In element 0-2: 0<s<b

2A; = 2A; , - 2A;
2A; :Ds h

> 1_E(b_e)

[2Actds, zlhts,l(ls,l ~b+e)
) 2 M2

d%0 ;
= Q. = EFJZAEtdS
0

d’o 1, 1
S = EFthtsl(Esl—b+e)

At point (0); s; = 0 mm
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SOro =0

Atpoint (1); s, =5 b = =5, = %50 — 5, = 25mm
~10 1 1
g, =—69000x5x10 ExlOOxeSl(Esl—b+e)
5 1
qr =-3.45x%10 {10031(5 S, —b+e)}

qr, = —3.45x10°° {100 x 25 (% x 2550 +18.75)}

Qr, = —3.45x107°[L00 x 25 x (~18.75) | = ~3.45x 10° [~ 46875]

5Qp, =1.62N /mm

At point (2); s, =b =50 mm and ¢, =-3.45x107° {100 S, (% s,—b+ e)}
Qr, = -3.45x107° [100 x 50 % (% x50 —50 +18.75)}

O, = —3.45x107°[100 x 50 x (-6.25)| = —3.45x10~°[- 31250

5.0p, =LIN/mm
In element 2-4: b<s<b+h

At point (3); s, = b + % h

|2Actds, L phte—b)—et(-2h?) = Loht(2e—b)+ Lent
) 4 8 ' 4 8

d’e[1 1
= E——| = bht(2e —b) + =eh?t
Ors = —3.45x105{%x50><100>< 2x(2x18.75-50) +%><18.75><1002 X 2:|

Or; = —3.45x107°[- 31250 + 46875

" Opy =—0.54N/mm
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The warping shear flow round the other half of the section will be established by

inspection of the section symmetry as shown in Fig (5.14), and unit for shear flow, Q.

is N/mm.

1.62
1.1
(o]
-0.54
(0]
1.1
1.62

Figure 5.14 Warping shear flow round cross-section at mid-span.

Table 5.9 Warping shear flow results round cross-section at mid-span.

Distance, s (mm) | Warping shear flow, g
N/mm)
0 0
25 1.62
50 1.1
100 -0.54
150 1.1
175 1.62
200 0

Warping shear flow VS. Distance

F a2 R 162

* N\ /N
RVARRN /1
\ /

0 ¢ 0
25 50 75\1)0 /‘_5 150 175 200
-0.5

~~"-054

Warping shear flow (N/mm)

Distance, s (mm)

Figure 5.15 Distribution of axial constraint shear flows round cross-section at
mid-span.
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5.12.2 At built-in end (where Z = Omm)

From Fig (5.13):

TZAEt dSl x T
0

Tw1=_th, gr =7 xt
SO =Ty X1

8

.|.2AEtdsl x T
s Oy, :_OI—W

At point (0); s; =0mm — ..Q, =0

At point (1); s; == b

N | =

From section 5.12.1; JZAEt ds, = % hts, (% s, —b+e)= [-46875]
0

Also, from section 5.3; I, =1.8x10°mm®

—46875 X 9000 _ 234 N/
1.8 x 108 7 mm

S

At point (2); s; = b =50 mm
_ K 1,1
From section 5.12.1; IZAEt ds, = 3 hts, (E s, —b+e)= [-31250]
0

_ —31250 x 9000

N
U2 =~ —7gx 108~ -° [mm

At point (3); s, = b + % h

From section 5.12.1;

% 1 1., 1 1.,
jZAEtdsz = —bht(2e —b) —et(—=h") = =bht(2e —b) + =eh“t =15625
0 4 8 4 8

15625 x9000

N
Ors =~ Tgx 105 = 078" /mm
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The warping shear flow round the other half of the section will be established by

inspection of the section symmetry as shown in Fig (5.16), and unit for warping shear

flow, g is V/mm.

2.34
1.6
O
-0.78
O
1.6
2.34

Figure 5.16 Warping shear flow round cross-section at built-in end.

Table 5.10 Warping shear flow results round cross-section at built-in end.

Distance, s (mm) | Warping shear flow, g,
N/mm)
0 0
25 2.34
50 1.6
100 -0.78
150 1.6
175 2.34
200 0

Warping shear flow VS. distance

2.5
M /‘\2.34
16 16 \

[EEN
(%) N

\\
/
N\
//

\\ // \ .
25 50 75\ 100 /25 150 175

-0.78

o
(0] o
D
N
1=y
o

'
[EEY

Warping shear flow (N/mm)

Distance, s (mm)

Figure 5.17 Distribution of axial constraint shear flows round cross-section at fix-end.
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5.13 Combined (torsion shear & warping shear) flow results; Calculations

5.13.1 At mid-span (where Z = 500mm)

de L_l_coshy(L—z)
dz GJ| cosh sl

d6 _ T [, cosh(1000-500)
dz GJ| cosh ul
do . .
Tow) = iGtE (St. Venant linear shear stress distribution)
— T {1_ cosh £(1000 —500)}
GJ cosh sl

tT cosh ££(500)
SR I Pihaillod Satd)
s =775 ( cosh 4L ]

-3
i , 2x9000 (1_cosh[1.1><10 (500)]]
=0 533

cosh (1.1)

= +33.77x(0.31)

ST

7y, = 104N /mm’
Gr =77, xt =0, =+10.4x2

g; =+20.8N/mm

The total shear flow distribution due to pure torsion through the all thickness of the

cross-section, and maximum occurring at the wall surfaces; as shown in Fig (5.18), and

unit for torsion shear flow, gy isV/mm.
+ 20.8

- 20.8

Figure 5.18 Linear shear flow distribution due to pure torsion.
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The combined maximum shear flow distribution around profile at mid-span will be found

by calculation of torsion shear flow and warping shear flow as shown in Fig (5.19).

Ll

q ined = N
qT =20.8 N/mm qr =1.62 N/mm Combined =22.42 /mm

Figure 5.19 Combined maximum shear flow distribution around profile at mid-span for
channel beam under restrained torsion.

dcombined = 91 + QF

Qcombined = 20.8 + 1.62=22.42 N/,

5.13.2 At built-in end (where Z = Omm)

do —L{l— cosh,u(L—z)}

dz GJ cosh s
d—g =0 (At fix-end)
dz
T, = i—th—g =0

(me0 dz

~ There is no shear flow due to pure torsion at built-in end. Therefore, there is a

warping shear flow due to axial constraint at built-in end, which is calculated in section

(5.12.2).
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5.13.3 At free end (where Z = 1000mm)

de L_l_coshy(L—z)
dz GJ| cosh L

@_T)
dz GJ cosh zl

[ cosh £(1000 —1000)}

4o _ T, 1
T dz GJ| coshul

Trim = iGtC:j—g (St. Venant linear shear stress distribution)

Zz

s
GJ cosh L

tT 1
oo TSI 1-
J cosh zl

. :izxgooo(l_ 1 j
(29 533 coshl.1

:ietL[l_ L }

coty, = +3377(0.4)

7y, =*13.5IN/mm?

Gr =77, xt =g, =113.51x2

g; =+27N/mm
The total shear flow distribution due to pure torsion through the all thickness of the

cross-section, and maximum occurring at the wall surfaces; as shown in Fig (5.20),

which torsion shear flow, g unit is N/mm.
27

27

Figure 5.20 Linear shear flow distribution due to pure torsion at free end.
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There is no warping shear flow due to axial constraint at free end.

Table 5.11 Summary of stress results due to restrained torsion.

Type of stress Maximum stress at cross section, (N /mmZ)
Fix-end Mid-span Free end
Normal stress due to torsional bending, 62.5 39.1 0
fw
Table 5.12 Summary of combined shear flow results due to restrained torsion.
Type of shear flow Maximum shear flow at cross section,
N/ mm)
Fix-end Mid-span Free end
Shear flow due to St. Venant torsion, 0 20.8 27
qr
Shear flows due to warping torsion, 2.34 1.62 0
Or
Sum of combined shear flow 2.34 22.42 27

Table 5.13 Summary of combined shear stress results due to restrained torsion.

Type of stress Maximum shear stress at cross section,
N/ o)
Fix-end Mid-span Free end
Shear stress due to St. Venant torsion, 0 10.4 13.51
TS
Shear stress due to warping torsion, 1.17 0.81 0
TW
Sum of combined shear stresses 1.17 11.21 13.51

In summary, three kinds of stresses arise in any channel section due to torsional
loading:
1) Shear stresses 1,in web and flanges due to rotation of the elements of the
cross section (St. Venant torsion,T).
2) Shear stresses 1, in the flanges due to lateral bending (Warping torsion,Ty,).
3) Normal stresses due to lateral bending of the flanges (Lateral bending moment

on flange).
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CHAPTER (6)

FINITE ELEMENT ANALYSIS

69



Chapter 6: Finite element analysis

6.1 FEA (Strand 7) Results for chapter (3)
Finite element (Strand 7) performed to analysis rectangular cantilever beam. The beam
dimensions are illustrated in Fig (3.1), the coordinates for key points are shown in table
(6.2) and beam properties are shown in table (6.1).
The Strand 7 software has been used for analysis models to determine the deflection &
bending stress along span of the beam, and bending stress & shear stress of the
cross-section area at mid-span of the beam, for all mesh diagrams in section (3.3).
The beam restraint in one end and free in other end. The point load is applied at the
free end of rectangular cantilever beam which is 1000 N, as indicated in Fig (6.1, 6.2,
6.3,6.4,6.5,6.6 &6.7).
Using 4-node quadrilateral element to create model one and using 8-node quadrilateral
elements to create model two then subdivided model two to create other models by
using 8-node quadrilateral element to obtained suitable results. So the finite element
model was constructed as following:

e Model (3) four 8-node quadrilateral elements

¢ Model (4) eight 8-node quadrilateral elements

e Model (5) sixteen 8-node quadrilateral elements

¢ Own model thirty two 8-node quadrilateral elements

Table 6.1 Beam property for rectangular section cantilever beam.

Beam Element Property

Materials Structural Beam cross section
Type Young’s Modulus, Poisson’s B (mm) D (mm)
E (MPa) Ratio, (v)
Steel-Beam 200000 0.3 50 150
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Table 6.2 Coordinate key points for rectangular section cantilever beam.

Key points Coordinate points
X (mm) Y (mm) Z (mm)
1 0 0 0
2 600 0 0
3 1200 0 0
4 0 75 0
5 1200 75 0
6 0 150 0
7 600 150 0
8 1200 150 0

Figure 6.1 4-node quadrilateral element.

Figure 6.2 8-node quadrilateral element.
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Figure 6.3 Four 8-node quadrilateral elements.

Figure 6.4 Eight 8-node quadrilateral elements.

Figure 6.5 Sixteen 8-node quadrilateral elements.
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Figure 6.6 Thirty two 8-node quadrilateral elements.

The following table 6.3, 6.4, 6.5 & 6.6 show the results obtained from Strand 7 for all
models.

Table 6.3 Vertical deflection results along the top surface of the cantilever beam.

Length Node Deflection (mm)
(mm) | number for Strand 7

own model | Model | Model | Model | Model | Model | Own
1 2 3 4 5 Model
0 6 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
75 19 -0.001 | -0.002
150 28 -0.005 | -0.005 | -0.005 | -0.005
225 33 -0.011 | -0.011
300 42 -0.017 | -0.018 | -0.018 | -0.018
375 47 -0.027 | -0.027
450 56 -0.037 | -0.038 | -0.038 | -0.038
525 61 -0.051 | -0.051
600 7 -0.042 | -0.063 | -0.064 | -0.065 | -0.065
675 73 -0.080 | -0.080
750 82 -0.093 | -0.095 | -0.096 | -0.096
825 87 -0.113 | -0.113
900 96 -0.128 | -0.129 | -0.130 | -0.131
975 101 -0.149 | -0.149
1050 110 -0.164 | -0.166 | -0.168 | -0.168
1125 115 -0.187 | -0.187
1200 8 -0.142 | -0.160 | -0.202 | -0.204 | -0.206 | -0.206
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Table 6.4 Bending stress results along the top surface of the cantilever beam.

Length Node Plate Bending Stress on top surface of the beam (MPa)
(mm) | number for | number for Strand 7
own model | own model | Model | Model | Model | Model | Model | Own
1 2 3 4 5 Model
0 6 5 3.204 | 3.966 | 6.295 | 6.352 | 6.470 | 6.598
75 19 5 6.049 | 6.040
150 28 59 5.600 | 5.646 | 5.627 | 5.585
225 33 9 5.180 | 5.201
300 42 9,13 4.905 | 4.939 | 4.782 | 4.800
375 47 13 4.404 | 4.405
450 56 13,17 4.000 | 3.981 | 3.968 | 4.000
525 61 17 3.599 | 3.599
600 7 17,21 3.200 | 3.414 | 3.407 | 3.230 | 3.249
675 73 21 2.800 | 2.800
750 82 21,25 2.400 | 2.403 | 2.372 | 2.448
825 87 25 2.000 | 1.999
900 96 25,29 1.413 | 1.782 | 1.572 | 1.647
975 101 29 1.195 | 1.200
1050 110 1,29 0.800 | 0.816 | 0.818 | 0.808
1125 115 1 0.480 | 0.521
1200 8 1 3.196 | 2.434 | 0.187 | 0.216 | 0.125 | 0.199

Table 6.5 Bending stress results at mid-span of the cantilever beam.

Depth Node Plate Actual Bending Stress at Mid-Span (MPa)
of number | number | depth from Strand 7
beam | for own | for own neutral
. Model | Model | Model | Model | Own
(mm) | model model axis (mm) 5 3 4 5 Model
0 7 17,21 -75 -3.200 | -3.414 | -3.410 | -3.230 | -3.249
37.5 67 17,21 -37.5 -1.687 | -1.614 | -1.597
75 65 15 0.000 | 0.035 | 0.001 | 0.000
1125 63 14,15 37.5 1.687 | 1.614 | 1.597
150 2 14,18 75 3.200 | 3.414 | 3.407 | 3.230 | 3.249

Table 6.6 Shear stress results at mid-span of the cantilever beam.

Depth Node Plate Actual Shear Stress at Mid-Span (MPa)
of number | number | depth from Strand 7
beam | for own | for own neutral

: Model | Model | Model | Model | Own
(mm) model model axis (mm) > 3 4 5 Model
0 7 17,21 -75 -0.134 | -0.140 | -0.044 | -0.033 | -0.008
37.5 67 17,21 -37.5 -0.132 | -0.133 | -0.158
75 65 15 -0.133 | -0.231 | -0.234 | -0.208
112.5 63 14,15 37.5 -0.132 | -0.133 | -0.158
150 2 14,18 75 -0.134 | -0.140 | -0.044 | -0.033 | -0.008

It is clear that the own model give a good results than other models. Hence, own model

has been chosen for analysis deflection, bending stress and shear stress, as shown in

Fig (6.7 & 6.8).
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Plate Disp:DY (mm)
0.000 [Pt:2]
-0.011
-0.022
-0.033
-0.043
-0.054
-0.065
-0.076
-0.087
-0.098
-0.109
0119
-0.130
<0141
-0.152
-0.163
0174
-0.185
-0.196

s -

0.206 [Pt:1)

Figure 6.7 Displacement results for thirty-two 8-node elements.

Plate Stress:XX (MPa)
6.598 [Pt:5]
5.903
5.209
4514
3.820

3125
2431
1.736
1.042
0.347
-0.347
-1.042
-1.736
243
<3125
-3.820
4.514
-5.209
-6.903

-6.698 [Pt:2]

Figure 6.8 Bending stress results for thirty-two 8-node elements.
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Figure 6.9 Strand 7 graph for deflection along span of the beam (For thirty-two 8-node

8.0

elements 3D Model).

Bending stress VS. Distance
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Figure 6.10 Strand 7 graph for bending stress along span of the beam (For thirty-two 8-
node elements 3D Model).
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Figure 6.11 Strand 7 graph for bending stress of the cross-section area at mid-span of
the beam (For thirty-two 8-node elements 3D Model).

Shear stress: XY (MPa)

Shear Stress VS, Depth at mid-span
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Figure 6.12 Strand 7 graph for shear stress of the cross-section area at mid-span of the

beam (For thirty-two 8-node elements 3D Model).
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6.2 FEA (Strand 7) Results for chapter (5)
Finite elements analysis has been undertaken for channel section cantilever beam
under restrained torsion. The beam dimensions are illustrated in Fig (5.1), plate
element properties are shown in table (6.7) and the coordinates for key points are
shown in table (6.8). The Strand 7 software has been used for analysis model to
determine the behaviour of channel section cantilever beam under torque. The qualities
of finite element results depend on the boundary constraint and element material
properties. The beam restraint in one end and free in other end. The torque is applied
by two imposed point loads at the free end of channel section beam one of them is
applied at the flange-web junction and the second point load is applied at the tip of the
flange in opposite direction to the first point load and thus, forces of 90 N represent a
torque T which is applied to the beam of 9000 N.mm as indicated in Fig (6.13). The
finite element analysis has been used to determine the results. Strand 7 procedure is
carried out by dividing the both flanges region to (200) elements and the web region to
(200) elements by using 8 quadrilateral elements as shown in Fig (6.14). The finite
element model was constructed with (400) elements to give the accurate results for
warping displacement and warping stresses along the beam in longitudinal direction
and around the cross section at mid-span. Also the angle of twist along the beam and
warping shear flow around cross-section at mid-span of the beam.

e Warping stress results have been taken from Global axis system in ZZ

direction.
e Warping displacement results have been taken from Global axis system in DZ
direction.
e Angle of twist results have been taken from Global axis system in RZ direction.
e Shear stress results have been taken from Local axis system in XY direction or

can be taken from Global axis system in ZX direction.
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Table 6.7 Element property for channel section cantilever beam.

Plate element property

Materials Structural Geometry
Type Material Young’s Modulus, E Poisson’s Membrane
(MPa) Ratio, (v) Thickness, t (mm)
Plate Isotropic 69000 0.334 2

Table 6.8 Coordinate key points for channel section cantilever beam.

Key points Coordinate points
X (mm) Y (mm) Z (mm)
1 50 0 0
2 25 0 0
3 0 0 0
4 0 50 0
5 0 100 0
6 25 100 0
7 50 100 0
8 50 0 500
9 0 0 500
10 0 100 500
11 50 100 500
12 50 0 1000
13 25 0 1000
14 0 0 1000
15 0 50 1000
16 0 100 1000
17 25 100 1000
18 50 100 1000

Figure 6.13 A thin-walled channel section cantilever beam subjected to restrained torsion.
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.,

Figure 6.14 A thin-walled channel section cantilever beam with meshing subjected to
restrained torsion.

6.3 Warping stress average results obtained by finite elements analysis
(Strand 7)

6.3.1 Warping stress results at top flange tip — along span

The distance (0) mm, start from the fix-end.

Plate Stress:Z7 Mid plane (MPa)
61.960 [Pt:103]

45.916
35.871
22.827

9.783
-3.261

. 16.305

-29.349

-42.393
55438

51.960 [Pt4]

Figure 6.15 Warping stress along the span of the beam (Global Axis System).
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Table 6.9 Warping stress results at top flange tip — along span.
Length, Z (mm) | Node number Plate number Warping stress, f7, (MPa)
0 7 103 61.96
100 404 111 50.586
200 437 119,123 43.787
300 474 131 37.327
400 507 143 31.268
500 11 151 25.720
600 575 163,159 20.434
700 612 171 15.235
800 645 179,183 10.333
900 682 191 5.377
1000 18 199 0
Warping Stress VWS, Distance
BO.0 %
400 F
[iad o
|:|_ -
= -
N C
w 200 F
i L
o C
&
[1N] -
o C
o 00F
_EI:I.I:I_IIII 1111 1111 1111 1111 1111 1111 1111 11 1 1 1111
o0 1000 2000 3000 4000 2000 GOOO 7000 8000 900.0 10000

Distance (mm)

Figure 6.16 Warping stress at top flange tip-along the span of the beam from (Strand7).

6.3.2 Warping stress results at mid-span

Table 6.10 Warping stress results at mid-span.

Distance, s (mm) | Node number | Plate number Warping stress, f,, (MPa)
0 8 52 25.720
50 9 298,55 -15.428
100 1002 301,302 0.000
150 10 305,154 15.428
200 11 151 -25.720
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9 8
L——EG mm—-J

Section A-A at mid-span

Figure 6. 17 Warping stress for a cross-section A-A at mid-span.

6.3.3 Warping stress results at fix-end span

Table 6.11 Warping stress results at fix-end span.

Distance, s (mm)

Node number

Plate number

Warping stress, f;, (MPa)

0 1 4 61.96
50 3 7,202 -36.713
100 4 205,206 0.000
150 5 106,209 36.713
200 7 103 -61.96
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Figure 6.18 Warping stresses round profile at fix-end of the beam.
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Figure 6.19 Distribution of axial constraint direct stress round section at built-in end and
mid-span of the beam from (strand 7) results.
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6.4 Warping displacement results obtained by finite elements analysis

(Strand 7)

6.4.1 Warping displacement results at top flange tip —along span

The distance (0) mm, start from the fix-end.

Plate Disp:DZ (mm)
0.389 [Pt:199]

0.307
0.225
0.143

60.777x10-2
21.238x1072
I -0.103
0.185
-0.267
I 0.349
-0.390 [Pt:100]

Figure 6. 20 Warping displacement along the span of the beam (Global Axis System).

Table 6.12 Warping displacement results at top flange tip — along span.

Length, Z (mm) | Node number | Warping , DZ (mm)
0 7 0
100 404 0.078
200 437 0.146
300 474 0.205
400 507 0.255
500 11 0.296
600 575 0.329
700 612 0.355
800 645 0.374
900 682 0.385
1000 18 0.389
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Figure 6.21 Warping displacement at top flange-along the span of the beam from (Strand7).

6.4.2 Warping displacement results at mid-span

«—

L[ I

1002 100 mm

I
L-—ﬁ(] mm—-J
Section A-A

Z X

Figure 6.22 Warping displacement for a cross-section A-A at mid-span.
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Table 6.13 Warping displacement results at mid-span.

Distance, s Node Warping stress, DZ (mm)
(mm) number
0 8 0.296
50 9 -0.178
100 1002 0.000
150 10 0.178
200 11 -0.296
Warping displacement VS. Distance
0.4
0.3 YZ%
0.2 /0\0.178
T o1 ~ \
E \
@ o 0
a ( 20 \Qo 60 8 100 12 140 160 80 200
g -0.1 \ ~
= \//
02 -0.178
0.3 \96
0.4

Distance, s (mm)

Figure 6.23 Warping displacement round cross-section at mid-span of the beam from
(Strand 7) results.

6.5 Angle of twist results obtained by finite elements analysis (Strand 7)

Table 6.14 Angle of twist results at top flange tip — along span.

Length, Z Node Angle of twist, 8, (degree)

(mm) number

0 7 0.000
100 404 0.185
200 437 0.607
300 474 1.252
400 507 2.095
500 11 3.105
600 575 4.252
700 612 5.506
800 645 6.835
900 682 8.142
1000 18 8.898
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Figure 6.24 Angle of twist along the span of the beam (Global Axis System).
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Figure 6.25 Angle of twist at top flange-along the span of the beam from (Strand 7).
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6.6 Warping shear flow results round section profile at mid-span obtained

by finite element analysis (Strand 7)

Table 6.15 Warping shear flow results at mid-span.

Distance, s Node Plate Thickness, | Shear stress, Shear stress,
(mm) number number t (mm) Tyy (MPa) q, (N/mm)’
qr = Txy Xt
0 8 52 2 0.000 0.00
25 194 53,54 2 0.846 1.69
50 9 298 2 0.540 1.10
100 1002 301 2 -0.282 -0.56
150 10 305 2 0.540 1.10
175 545 152,153 2 0.846 1.69
200 11 151 2 0.000 0.00
Warping shear flow VS. Distance
| /L’\
69 1.69
‘S 15 /\
= /1 N\ /.
< 1.1 11
¢ / \ / \
o
© 0.5
()
i
< \ /
2 060 A / 0
a 25 50 75\ 100 /:.5 150 175 200
c
= 05 70.56
-1
Distance, s (mm)

Figure 6.26 Distribution of axial constraint shear flows round cross-section at mid-span

of the beam from (Strand 7) results

The combined maximum shear flow distribution around profile at mid-span has been

found at node 545 at middle of the flange as shown in table (6.16).

Table 6.16 Combined maximum shear flow result around profile at mid-span.

Distance, s Node Plate Thickness, | Shear stress, Shear stress,
(mm) number number |t (mm) Tyy (MPa) A N/mm), =
Tyy Xt
175 545 152,153 2 10.661 21.3
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CHAPTER (7)

COMPARISON OF RESULTS AND
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Chapter 7: Comparison of results and discussion

Comparison between finite element analysis (Strand 7) and theoretical calculation for:
e Rectangular cantilever beam under point load at free end.

¢ Thin-walled channel cantilever beam under restrained torsional loading.

7.1 Rectangular cantilever beam under point load at free end

In this section the percentage differences are calculated for all the models and
compared with the theoretical results. The following tables summarize all the
percentage differences for each model.

The deflection results between theoretical and Strand 7 is shown in table (7.1). Also the
percentage of error between theoretical and finite element analysis are shown in table
(7.2). However, the results have ignored where the theoretical values are smaller than
the other Strand 7 modelling results values.

Table 7.1 Vertical deflection results along the top surface of the beam.

Length Deflection (mm)
() IR 7 Theoretical
Model | Model | Model | Model | Model Own Result
1 2 3 4 5 Model
0 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000
75 -0.001 | -0.002 -0.001
150 -0.005 | -0.005 | -0.005 | -0.005 -0.005
225 -0.011 | -0.011 -0.010
300 -0.017 | -0.018 | -0.018 | -0.018 -0.017
375 -0.027 | -0.027 -0.027
450 -0.037 | -0.038 | -0.038 | -0.038 -0.038
525 -0.051 | -0.051 -0.050
600 -0.042 | -0.063 | -0.064 | -0.065 | -0.065 -0.064
675 -0.080 | -0.080 -0.079
750 -0.093 | -0.095 | -0.096 | -0.096 -0.095
825 -0.113 | -0.113 -0.112
900 -0.128 | -0.129 | -0.130 | -0.131 -0.130
975 -0.149 | -0.149 -0.148
1050 -0.164 | -0.166 | -0.168 | -0.168 -0.167
1125 -0.187 | -0.187 -0.185
1200 | -0.142 | -0.160 | -0.202 | -0.204 | -0.206 | -0.206 -0.204

90



Table 7.2 Percentage difference for deflection along beam span.

Length | Theoretical Percentage of error (%)
i Result Model | Model | Model | Model | Model Own
1 2 3 4 5 Model
0 0.000 0 0 0 0 - -
75 -0.001 - -
150 -0.005 0 0 - -
225 -0.010 - -
300 -0.017 0 0 - -
375 -0.027 - -
450 -0.038 0 0 - -
525 -0.050 - -
600 -0.064 -34.4 -1.6 0 - -
675 -0.079 - -
750 -0.095 2.1 0 - -
825 -0.112 - -
900 -0.130 -1.5 -0.8 - -
975 -0.148 - -
1050 -0.167 -1.8 -0.6 - -
1125 -0.185 - -
1200 -0.204 -30.4 -21.6 -1 0 - -
Average percentage 30.4 28 1.6 0.7 0 0
error difference
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Figure 7.1 Vertical deflection along the top surface of the beam.
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In table (7.2); the maximum percentage difference occurs in model 1 (30.4%) and it can
be seen that the major difference is in Model 1 and model 2. This difference is clearly
shown in Fig (7.1). This difference is because these two models contain just 1 element.
The model (3 & 4) contains very small percentage difference and at model (5 & own
model) is zero. This shows that the beam should have at least four elements for it to
work and to produce accurate results. Therefore, it clear to see that model (3, 4, 5, 6 &
own model) are very close to each other. Also the maximum deflections occur at the

free end of the beam and it is zero at the fix end of the beam as shown in Fig (7.1).

Table 7.3 Bending stress results along the top surface of the beam.

Length Bending Stress on top surface of the beam (MPa)
Gt S D Theoretical
Model | Model | Model | Model | Model Own Result
1 2 3 4 5 Model

0 3.204 | 3.966 | 6.295 | 6.352 | 6.470 | 6.598 6.400
75 6.049 | 6.040 6.000
150 5.600 | 5.646 5.627 | 5.585 5.600
225 5.180 | 5.201 5.200
300 4905 | 4939 | 4.782 | 4.800 4.800
375 4.404 | 4.405 4.400
450 4.000 | 3.981 | 3.968 | 4.000 4.000
525 3.599 | 3.599 3.600
600 3.200 | 3.414 | 3.407 | 3.230 | 3.249 3.200
675 2.800 | 2.800 2.800
750 2.400 | 2.403 | 2.372 | 2.448 2.400
825 2.000 | 1.999 2.000
900 1.413 1.782 1.572 1.647 1.600
975 1.195 | 1.200 1.200
1050 0.800 | 0.816 | 0.818 | 0.808 0.800
1125 0.480 | 0.521 0.400
1200 3.196 | 2.434 | 0.187 | 0.216 | 0.125 | 0.199 0.000

In table (7.4); the maximum percentage difference for bending stress on the top surface
of the beam occurs in model 1 which is (50%) and the value for model 2 is also quite
big (38%). This big difference can be seen in Fig (7.2). The two lines for model 1 and
model 2 do not match the lines of the rest of the models. The percentage difference for
the rest of the models is very small and it is minimum for the own model which shows
that the own model is very adequate compared to the others. The same theory applies
here also. The more elements, the more adequate is the result. Also the maximum

bending stresses occur at the fix end of the beam and it is zero at the free end.
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Table 7.4 Percentage difference for bending stress along beam span.

Lenath | Theoretical Percentage of error (%)
(mr?l) Result Model | Model | Model | Model | Model Oown
1 2 3 4 5 Model
0 6.400 50 38 1.6 0.8
75 6.000
150 5.600 0 0.3
225 5.200 0.4
300 4.800 0.4 0.7
375 4.400 0 0
450 4.000 0 0.5 0.8 0
525 3.600 0 0
600 3.200 0
675 2.800 0 0
750 2.400 0 1.2
825 2.000 0 0
900 1.600 11.7 1.7
975 1.200 0.4 0
1050 0.800 0
1125 0.400
1200 0.000
Average percentage 50 38 6.65 0.65 0.8 0.5
error difference
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Figure 7.2 Bending stress along the top surface of the beam.
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Table 7.5 Bending stress results at mid-span of the beam.

Depth Actual depth Bending Stress at Mid-Span (MPa
of beam from neutral Strand 7 Theoretical
(mm) axis (mm) Model | Model | Model | Model Own Result
2 3 4 5 Model

0 -75 -3.200 | -3.414 | -3.410 | -3.230 | -3.249 -3.200
37.5 -37.5 -1.687 | -1.614 | -1.597 -1.600
75 0 0.000 0.035 0.001 | 0.000 0.000
112.5 37.5 1.687 1.614 | 1.597 1.600
150 75 3.200 | 3.414 3.410 3.230 | 3.249 3.200

Table 7.6 Percentage difference for bending stress at mid-span of the beam.

Actual Percentage of error (%)
r(lj :Sttrgr r;?s Th;grsitllf 2 Model | Model Model Model Own
2 3 4 5 Model
(mm)
-75 -3.200 0 6.7 6.6 0.9 15
-37.5 -1.600 5.4 0.9 0.2
0 0.000 0 0 0 0
37.5 1.600 54 0.9 0.2
75 3.200 0 6.7 6.6 0.9 15
Average percentage error 0 6.7 6 0.9 0.85
difference

In table (7.6); the percentage difference is zero at model 2. This means that the
bending stress at mid-span does not depend on how many elements are present in the
model which is not the case for bending stress along the top surface of the beam. Also
Fig (7.3) shows how the results for the different models are almost similar. All the
graphs nearly fit on the same line. The maximum bending stresses occur at the surface
of the cross section of the beam and it is zero at neutral axis. Moreover, it varies

linearly as illustrated in Fig (7.3).

Bending Stress VS. Depth at mid-span
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Figure 7.3 Bending stress at mid-span of the beam.
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Table 7.7 Shear stress results at mid-span of the beam.

Depth Actual depth Shear Stress at Mid-Span (MPa)
of beam from neutral Strand 7 Theoretical

(mm) axis (mm) Model | Model | Model | Model Own Result

2 3 4 5 Model
0 -75 -0.134 | -0.140 | -0.044 | -0.033 | -0.008 0.000
37.5 -37.5 -0.132 | -0.133 | -0.158 -0.150
75 0 0.000 | -0.133 | -0.231 | -0.234 | -0.208 -0.197
112.5 37.5 -0.132 | -0.133 | -0.158 -0.150
150 75 -0.134 | -0.140 | -0.044 | -0.033 | -0.008 0.000

Table 7.8 Percentage difference for shear stress at mid-span of the beam.

Actual Percentage of error (%)
r? :Sttrgr r:)?s Th;grsitllf 2 Model | Model Model Model Own
2 3 4 5 Model
(mm)
-75 0.000 - - - - -
-37.5 -0.150 12 11 5
0 -0.197 32 17 18 5.6
37.5 -0.150 12 11 5
75 0.000 - - - -
Average percentage error - 32 13.7 13 5.2
difference

In table (7.8); the maximum percentage difference occurs in model 3 (32%) and in Fig

(7.4) it can be seen that the major difference is in model 2 and 3. The model (4 & 5)

contains very small percentage difference and at own model is (5.2%) which is a better

value. This shows that the beam should have at least four elements for it to work and to

produce accurate results. The maximum shear stresses occur at the centre of the cross

section of the beam as shown in Fig (7.4).
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Figure 7.4 Shear stress at mid-span of the beam.
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7.2 Thin-walled C-channel cantilever beam under restrained torque

loading

In this section the percentage differences are calculated between theoretical and finite
element analysis (Strand 7). It is very important to check and compare theoretical

results with finite element analysis to obtained accurate results.

7.2.1 Comparison of warping at top flange tip—along the span

Table 7.9 Percentage of error for warping displacement results at flange tip—along

span.
Length, Z Warping displacement (mm) Percentage
(mm) Theoretical, (W) | Strand 7, (DZ) | of error (%)
0 0.00 0.000 0
100 0.08 0.078 2.5
200 0.16 0.146 8.75
300 0.22 0.205 6.8
400 0.27 0.255 5.6
500 0.31 0.296 4.5
600 0.35 0.329 6
700 0.38 0.355 6.6
800 0.40 0.374 6.5
900 0.41 0.385 6.1
1000 0.41 0.389 5
Average percentage error (%) 5.8
Warping displacement VS. Length
0.45
|
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Figure 7.5 Comparison of warping at top flange tip—along the span between theoretical
and Strand 7.
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In the table (7.9); it shows that the average percentage along the span between
theoretical and Strand 7 is (5%) which is small value and good adjustment for channel
section behaviour under constraint torsion. In the Fig (7.5); the warping displacement is
linearly started from zero (mm) to 0.078 (mm), which point (0.078) is intersection point
between theoretical and Strand 7 at distance of 100 mm, then warping from that point
is started non linearly till distance of 1000 mm. It is clear that theoretical value is not
match exactly with Strand 7 by 5% differences. However, at both state the maximum
warping displacement occurs at the free end of the thin-walled channel section

cantilever beam under constraint torsion and it is zero at the fix end of the beam.

7.2.2 Comparison of warping round cross-section at mid-span

Table 7.10 Percentage of error for warping displacement at mid-span.

Distance, s Warping displacement (mm) Percentage
(mm) Theoretical, (W) | Strand 7, (DZ) | of error (%)
0 0.31 0.296 4.5
50 -0.19 -0.178 6.3
100 0.00 0.000 0
150 0.19 0.178 6.3
200 -0.31 -0.296 4.5
Average percentage error (%) 54

Warping displacement VS. Distance
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Figure 7.6 Comparison of warping at mid-span between theoretical and Strand 7.
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The average percentage error is (5.4%) between theoretical and Strand 7 as shown in
table (7.10). However, Fig (7.6) shows how the results between theoretical and Strand
7 are almost similar. Moreover, both graphs nearly fit on the same line and warping
displacement are varies linearly at the flange and the web, and it is zero at the middle
of the web as indicated. Also, the values which are shown on Fig (7.6) are representing

the average value between theoretical and Strand 7.

7.2.3 Comparison of warping stress at top flange tip—along the span

Table 7.11 Percentage of error for warping stress results at flange tip—along span.

Length, Z Warping stress (MPa) Percentage
(mm) Theoretical, (f;,) | Strand 7, (fzz) | of error (%)
0 62 61.96 0
100 53.8 50.586 6
200 46.3 43.787 54
300 394 37.327 5.3
400 32.9 31.268 5
500 26.8 25.720 4
600 21.1 20.434 3.2
700 15.6 15.235 2.3
800 10.3 10.333 0
900 5.1 5.377 54
1000 0 0 0
Average percentage error (%) 4.6

Warping stress VS. Length
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Figure 7.7 Comparison of warping stress at top flange tip-along span between
theoretical and Strand 7.
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In the table (7.11); the average percentage error is (4.6%) between theoretical and
strand 7. Also Fig (7.7) shows how the results between theoretical and Strand 7 are
almost similar. Moreover, the maximum warping stresses occur at the restrained end of
the beam and it is zero at the free end because there is no axial constraint. Fig (7.8) is
clearly shows the differences between warping displacements and warping stresses
versus length of the beam. A good agreement is obtained between theoretical and
Strand 7 results for channel section behaviour under constraint torsion because the
finite element model was constructed with (400) elements which is indicated in Fig
(6.14). In addition the maximum warping displacement occurs at the free end of the

beam and it is zero at the fix end due to St. Venant theory.

Warping stress & Warping displacement VS. Length
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Figure 7.8 Comparison of warping displacement & warping stress at top flange tip-
along the span between theoretical and strand 7.
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7.2.4 Comparison of warping stress round cross-section at mid-span & built-in

end

Table 7.12 Percentage of error for warping stress at mid-span.

Distance, s Warping stress (MPa) Percentage
(mm) Theoretical, (f,,) | Strand 7, (fzz) | of error (%)
0 39.1 25.720 34
50 -23.4 -15.428 34.1
100 0.00 0.000 0
150 23.4 15.428 34
200 -39.1 -25.720 34.1
Average percentage error (%) 34

Table 7.13 Percentage of error for warping stress at built-in end.

Distance, Warping stress (MPa) Percentage
s(mm) Theoretical, (f,,) | Strand 7, (fzz) | of error (%)
0 62.5 61.96 0
50 -37.5 -36.713 2.1
100 0.00 0.000 0
150 37.5 36.713 2.1
200 -62.5 -61.96 0
Average percentage error (%) 2.1
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Figure 7.9 Comparison of distribution of axial constraint direct stress around cross
section between theoretical and strand7.
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In tables (7.12 & 7.13); the average percentage error at mid-span is (34%) which is
quite bigger than the average percentage error at fix-end of the beam, which is (2.1%)
this differences between mid-span and fix-end is refer to constraint torsion at fix-end of
the beam. However, the angle of rotation is zero at fix-end.

Fig (7.9) shows how the results between theoretical and Strand 7 are almost similar for
warping stress at built-end and both graphs nearly fit on the same line. Also it is noted
that warping stress at mid-span is slightly different between theoretical and Strand 7
due to occurs rotation at mid-span. The warping stresses are varies linearly at the
flanges and the web, and it is zero at the middle of the web for both cases as indicated
in Fig (7.9). Furthermore, the maximum warping stresses occur at the flange tip where
the distance (s = 0). The improved accuracy and precision between theoretical and
Strand 7 results is provided by increasing the number of elements in finite element

analysis.

7.2.5 Comparison of angle of twist at top flange tip—along the span

Table 7.14 Percentage of error for angle of twist results at flange tip—along span.

Length, Z Angle of twist, 8, (degree) Percentage
(mm) Theoretical Strand 7 of error (%)
0 0.000 0.000 0
100 0.099 0.185 46.5
200 0.551 0.607 9
300 1.248 1.252 0
400 2.155 2.095 2.8
500 3.237 3.105 4.1
600 4.460 4.252 4.7
700 5.796 5.506 5
800 7.215 6.835 5.3
900 8.688 8.142 6.3
1000 10.188 8.898 12.7
Average percentage error (%) 10.7

In the table (7.14); the average percentage error is (10.7%) between theoretical and
strand 7 which identify a good agreement. Also Fig (7.10) shows how the results
between theoretical and Strand 7 are almost similar. Moreover, the maximum angle of
rotation occurs at the free end of the beam and it is zero at the built-in of the beam

because there is axial constraint at fix end.
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Fig (7.10) is clearly shows that the angle of rotation is non-linearly changes along thin-

walled channel section cantilever beam under restrained torsion.
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Figure 7.10 Comparison of angle of twist at top flange tip-along the span due to axial
constraint.

7.2.6 Comparison of angle of twist at free end due to axial constraint

To check the angle of twist at the free end due to the effect of constraint and compared
with St. Venant rotation for channel thin-walled cantilever beam under restrained

torsional loading shown in Fig (7.11) illustrates the stiffening effect of axial constraint;

Tz 9000 x1000

- = T 0653 rad
GJ ~ 25862 x 533 ra

180
6 = 0.653 x — = 37.4° (due to St.Venant)

From table (7.14) the angle of twist at free end is:

6 = 10.188° ( due to axial constraint)
Table 7.15 Angle of twist at free end.
Length Angle of twist, 6, (degree) Percentage
(mm) St. Venant Wagner of error (%)
0 0 0 0
1000 37.4° 10.188 ° 72.6
Average percentage error (%) 72.8
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In the table (7.15); the average percentage error is (72.8%), which is very high due to
axial constraint. The decrease in the effect of axial constraint towards the free end of
the beam is demonstrated by the variation of the St. Venant (T;) and Wagner (T,)

torques along the length of the beam as shown in Fig (7.11).
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Figure 7.11 Stiffening effect of axial constraint.

7.2.7 Comparison of St. Venant torsion and Wagner torsion-bending along span

Table 7.16 St. Venant torsion and Wagner torsion-bending results along span.

Length, Z i 74

(mm) T T
0 0.000 1.000
100 0.082 0.918
200 0.153 0.847
300 0.214 0.786
400 0.265 0.735
500 0.308 0.692
600 0.342 0.658
700 0.368 0.632
800 0.386 0.613
900 0.397 0.603
1000 0.401 0.599
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Figure 7.12 Distribution of St. Venant and torsion bending techniques along open
section beam.

(T;) and (Ty,) are now plotted against (z) as fractions of the total torque (T) Fig (7.12).
At the built-in end the entire torque is resisted by axial constraint stresses, but although
the constraint effect diminishes towards the free end it does not disappear entirely. This

is due to the fact that the axial constraint shear flow, does not vanish at (z = L), at this

3
section, F is not zero.
Z

7.2.8 Comparison of warping shear flow round cross-section at mid-span

Table 7.17 Percentage of error for warping shear flow results round cross-section at

mid-span.
Distance, s Warping shear flow, Percentage
(mm) N/ of error (%)
Theoretical Strand 7
0 0 0.00 0
25 1.62 1.69 4
50 1.1 1.10 0
100 -0.54 -0.56 3.6
150 1.1 1.10 0
175 1.62 1.69 4
200 0 0.00 0
Average percentage error (%) 3.9
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The average percentage error of warping shear flow is (3.9%) between theoretical and
Strand 7 for channel round cross section at mid-span of the cantilever beam under
torsional loading as shown in table (7.17). However, Fig (7.13) shows how the results
between theoretical and Strand 7 are almost similar and the values which are shown
on this graph representing the average value between theoretical and Strand 7.
Moreover, both graphs nearly fit on the same line and warping shear flow are varies
non-linearly (parabolic distribution) at the flanges and the web. The maximum warping

shear flows occur at middle of the flanges and it is zero at the distance where (s =0 &
s = 200) mm as indicated in Fig (7.13) and this is shows that the section is distorted in

their own plane during torsion-bending.
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Figure 7.13 Comparison of distribution of axial constraint of shear flows round cross-
section at mid-span.

7.2.9 Comparison of combined shear flow round cross-section at mid-span

The average percentage error of combined shear flow is (5.3%) between theoretical
and Strand 7 which identify a good agreement for channel round cross section at mid-
span of the cantilever beam under restrained torsion as shown in table (7.18).

Table 7.18 Percentage of error for combined shear flow results round cross-section at

mid-span.
Combined shear flow, q. (N/;mm) Percentage of error (%)
Theoretical Strand 7
22.42 21.3 5.3
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CHAPTER (8)

CONCLUSIONS AND RECOMMENDATIONS
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Chapter 8: Conclusions and recommendations

8.1 Conclusions

This project proposed to describe the behaviour of St. Venant principle, Wagner
torsion-bending and Vlasov assumption on thin-walled open section cantilever beam
under restrained torsion. A thin-walled open section cantilever beam has been
developed for determining the behaviour of warping stress, warping displacement
distribution, angle of twist and axial shear flow under restrained torsion.

When the end of a torsion member is restrained so that the cross-section is prevented
from warping, tension and compression forces develop at the restraint and axial
stresses are introduced. The angle of twist depends on the dimensions of the cross-
section, thickness and the length of the member. By increasing the number of elements
this will achieve more accurate results for bending stress and displacement as shown
in chapter 3.

The secondary warping has been ignored due to significant values for the primary
warping in thin-walled channel section cantilever beam subjected to restrained torsion.
Warping shear flow is zero at the free end due to being restrained at the built-in end
and the maximum warping displacement with maximum angle of twist are occur at free
end. Also, the maximum warping stress occurs at fix-end and varies linearly around
profile and it is zero at the middle of the web. In addition, the maximum warping stress
occurs at the flange tip at built-in end. The maximum axial constrained shear flow
distribution occurs first at the middle of the flanges and second at the flange-web
junction at the built-in end of the beam.

Theoretical analysis is showed that warping shear flow is proportional to young’s
modulus, third derivative of angle of twist, cross section dimensions and the integration
of the first sectorial moment.

Previous studies in literature review are discussed and similar results are exposed with

Loughlan, J. and Ata, M. Research, which the flange shows identical parabolic
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behaviour for shear flow results and the maximum value occurs at the middle of the
flange under restrained torsion.

It has been revealed that the location of the shear centre is very important and it
depends on the shape of the cross section.

Comparisons are made between theoretical calculation and finite element analysis to
define the percentage of error and have shown the excellent agreements of obtained
results. Hence, the accuracy of the result depends on the number of elements.

It has been noticed that warping stress results around cross section due to restrained
torsion is more accurate at built-in end than mid-span. This could be due to that there is
no rotation at built-in end. Also, warping shear flow distribution results were getting
more accurate in the web than the flanges; this may be due to both loads being applied

through the flange area to create a torque.

8.2 Recommendations

¢ Additional work can be done to assess restrained torsion bending behaviour in
different cross section as Z-section, I-section and angle section.

e Experiment should be carried out to investigate and compare results with
theoretical and finite element analysis.

e Further study can be carried out to expose the effects of secondary warping
behaviour on T-section under restrained torsion.

e Additional load can be applied to find out lateral torsional buckling behaviour.

e Closed section can be used instead channel section under restrained torsion to
investigate behaviour of warping displacement, warping stress and warping
shear flow, and compared with channel section.

e The same process can be done for different material to get comparison

behaviour of different material under restrained torsion.
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Appendix: A

Torsion properties of thin-walled cross sections

530 THEORY OF ELASTIC STABILITY
Tapre A-3. PROPERTIES OF SECTIONS
() = shear center  J = torsion constant Cy = warping constant
7 3
| - —T J-EH;"+M.*- Iy =te =1
by w 3
Off— & 1,h% L
t =" =
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* € MI+M- . = Eb‘l
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Source: S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability. 2" ed., McGraw-

Hill, New York, 1961.
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Appendix: B

Shear stress (t,,) results at Mid-plane & +Z plane; from Strand 7 for channel section.

SYSTEM: Strand7 Release 2.1.1

FILE C:Usersthallogull Documents' My dissertation 2012\Strand 7 files\Chapter 6\Chapter 6 Strand 7'Mesh Original st7

TIME: 21 October 2012 146 pm

TITLE:  Finite Element Analysis for Channel Section Cantilevered Beam Subject to Restrained Torsional Loading
DESCRIPTION: Channel Section Cantilevered Beam Subject to Restrained Torsional Loading

USER. NAME: Osman Karim Abdullah
REF NUMBER: London South Bank University (ID: 2528740)

Model: Mesh Original

Result type: Plate stress

Coordinate system: Local coordinate system
Plane: PLANE: Mid-plane

Freedom case: 1: Freedom Case 1

Result case: 1: Load Case 1

Group: Model

Property: 1: Plate property 1

Stress(xx) Stress(vy) Stress(xv)

(MPa) (MPa) (MPa)
Plate 52: Node 8 378.320e-6 -25.720 22 836e-3
Plate 53:Node 194 -6.271e-3 -5.152 0.846
Plate 54:Node 194 -6.422e-3 -5.152 0.846
Plate 151: Node 11  -378337e-6 25720 22 835e-3
Plate 152: Node 545 6.270e-3 5.152 0.846
Plate 153: Node 545 6.421e-3 5.152 0.846
Plate 298: Node 9 -284983¢-6 15428 0.540
Plate 301: Node 1002 -31.130e-6 53471e-6 -0.282
Plate 305: Node 10 282 476e-6 -15.428 0.540

Stress(xz)
(MPa)

-3.654e-3
-4.146e-3
-4.147e-3
-3.654e-3
-4.145e-3
-4.147e-3
12.701e-3
12.210e-3
12.697e-3

Stress(vz)  Stress(User)

(MPa)

1.097
-0.122
0.123
1.097
-0.122
0.123
1.099

(MPa)

0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0

-2.838e-3 0.000e+0

-1.099

SYSTEM: Strand7 Release 2.1.1

0.000e+0

FILE C:Users'hallogull Documents\My dissertation 2012\Strand 7 files\Chapter 6\Chapter 6 Strand 7'Mesh Original st7

TIME: 21 October 2012 2:10 pm

TITLE:  Finite Element Analysis for Channel Section Cantilevered Beam Subject to Restrained Torsional Loading
DESCRIPTION: Channel Section Cantilevered Beam Subject to Restrained Torsional Loading

USER NAME: Osman Karim Abdullah
REF NUMBER: London South Bank University (ID: 2528740)

Model: Mesh Original

Result type: Plate stress

Coordinate system: Local coordinate system
Plane: PLANE: +7 Plane

Freedom case: 1: Freedom Case 1

Result case: 1: Load Case 1

Group: Model

Property: 1: Plate property 1

Stress(xx)  Stress(vy)  Stress{xy)  Stress(xz)  Stress(vz)  Stress(User)
(MPa) (MPa) (MPa) (MPa) (MPa) (MPa)
Plate 152: Node 545 -0.604 4228 10.661 -4.145e-3 -0.122 0.000e+0
Plate 153: Node 545 -0.605 4228 10.661 -4.147e-3 0.123 0.000e+0

114



Appendix: C
Warping displacement (DZ) and angle of twist (RZ) results at Mid-plane; from Strand 7

for channel section.

SYSTEM: Strand7 Release 2.1.1
FILE C:\Users'hallogull Documents\My dissertation 2012'Strand 7 files'Chapter 6\Chapter 6 Strand 7\Mesh Original st7
TIME: 21 October 2012 234 pm

TITLE:  Finite Element Analysis for Channel Section Cantilevered Beam Subject to Restrained Torsional Loading
DESCRIPTION: Channel Section Cantilevered Beam Subject to Restrained Torsional Loading

USER NAME: Osman Karim Abdullah

REF NUMBER: London South Bank University (ID: 2528740)

Model: Mesh Original

Result type: Node displacement
Coordinate system: Global XYZ
Freedom case: 1: Freedom Case 1
Result case: 1: Load Case 1
Group: Model

Property: 1: Plate property 1

DX DY DZ BX RY RZ

(mm) (mm) (mm) (deg) (deg) (deg)
Node 7 0.000e+0 0.000e+0 0.000e+0 0.000e+0 0.000e+0 0.000e+0
Node 8§ 2.690 3.712 -0.296 -0.740 0.000e+0 3.108
Node 9 2.689 1.004 0.178 -0.209 0.539 3.093
Node 10 -2.689 1.004 -0.178 -0.209 -0.539 3.093
Node 11 -2.690 3.712 0.296 -0.740 0.000e+0 3.105
Node 18 -8.423 11.043 0.389 -0.536 0.000e+0 8.898
Node 404 -0.133 0.210 78.076e-3 -0.205 0.000e+0 0.185
Node 437 -0.498 0.713 0.146 -0.366 0.000e+0 0.607
Node 474 -1.065 1.488 0.205 -0.512 0.000e+0 1.252
Node 307 -1.805 2.500 0.255 -0.636 0.000e+0 2.095
Node 575 -3.695 5.089 0.329 -0.823 0.000e+0 4252
Node 612 -4.794 6.595 0.355 -0.887 0.000e+0 5.506
Node 645 -5.964 §.193 0.374 -0.925 0.000e+0 6.835
Node 682 -7.181 9.799 0.385 -0.871 0.000e+0 8.142
Node 1002 -163.46%e-9 1.002 0.000e+0 0.000e+0 -181.627e-9 3.076
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Warping stresses (f,,) results at Mid-plane; from Strand 7 for channel section.

SYSTEM: Strand7 Release 2.1.1‘
FILE C:\Users hallogull Documents My dissertation 2012'Strand 7 files\Chapter 6'Chapter 6 Strand 7Mesh Otiginal st7
TIME: 21 Qctober 2012 3:39 pm

TITLE:  Finite Element Analysis for Channel Section Cantilevered Beam Subject to Restrained Torsional Loading

DESCRIPTION: Channel Section Cantilevered Beam Subject to Restrained Torsional Loading
USER NAME:  Osman Karim Abdullah

REF NUMBER: London South Bank Unversity (ID: 2528740)

Modet Mesh Original

Result type: Plate stress

Coordinate system: Global XYZ

Plane: PLANE: Mid-plane

Freedom case; 1: Freedom Case |

Result case: 1: Load Case 1

Group: Model

Property: 1: Plate property |
Stress(XX)

Plate 4:Node 1
Plate 7:Node 3
Plate 103: Node 7
Plate 106:Node 3
Plate 111: Node 404
Plate 119: Node 437
Plate 123: Node 437
Plate 131: Node 474
Plate 143: Node 507
Plate 151: Node 11
Plate 159%: Node 573
Plate 163: Node 573
Plate 171: Node 612
Plate 179: Node 645
Plate 183: Node 645
Plate 191: Node 682
Plate 199 Nodz 18
Plate 202: Node
Plate 205 Node
Plate 206: Node
Plate 209 Node

[ S L )

(MPa)
14573
8917
14573
3917
0.129
23.677e3
36.001e-3
03,6446
26518¢-3
3783376
23.127e-3
239233

-198.396¢-6

12.862e-3

-21.843¢-3
-10.25%-3
-12.696¢-3

0.000e+0
0.000e+0
0.000e+0
0.000e+0

Stress(YY)
(MPa)
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e-0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
§.609
-0228
0.228
-8.609

Stress(ZZ)

(MPa)
61960

36.713
61.960

-36.713

50.386
43787
43607
31327
31.268
15720
10434
20.292
15.235
10333
10.199
5371
-0.219
36.397
-83.767e-3
§3.767¢-3
-36.597
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Stress(XY)

(MPa)
10.141e3

-79.458e-3

10.141e-3

-79.438¢-3

§.894e-3
7307e-3
6.239¢-3
5.299¢-3
4.389-3
3.634e-3
17483
1620e-3
1.066¢-3
1.62%-3
2917e-3

-12.258e-3
-T1.735%-3

aaaaa

7671e-3
1671e-3
-35529e-3

Stress(YZ)

(MPa)
-876.978¢-6

0.689
-§76.973e-6
0.689
0312
0351
0538
0.759
0.940
1.097
124
1219
34
368
368
215
-46.111e-3
4217
-1971
97
i

1
1
1
1

-1.971
4217

Stress(ZX)
(MPa)
6.213
2031

-6.213

-2.031

-39.386¢-3

-26.597¢-3

-175%4e-3
-15.667¢-3

-4 483e-3

-11.83%-3
-11.534e3
-12.008¢-3

-20961e-3

-20.073¢-3

-20.339¢-3

-27.136e-3

36.439%-3
0.329

567763

5677e-3
-0.329

Stress(User)
(MPa)
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0
0.000e+0



Appendix: D
Deflection results (DY); from Strand 7 for Own model rectangular section cantilever

beam.

SYSTEM: Strand7 Release 2.1.1
FILE  F:\Dissertation 2012\My NS Dissertation 2012\Dissertation\My Dissertation by Strand7\3D from 20\Own 3D\Meshé.st7
TINE: 13 August 2012 12:59 pm

Vodel: Meshb

Result type: Node displacement
Coordinate system: Global X¥z
Freedom case: 1: Freedom Case 1
Result case: 1: Load Case 1
Group: Mode]

Property: 1: Plate Property 1

)4 oY 0z RX RY RZ

(nm) (m) ) (deg) (deg) (deg)
Node 1 0,000 0.000 0.000 0.000 0,000 0.000
Node 2 -0.014 -0, 065 0.000 0.000 0.000 0.000
Node 3 0,019 -0, 206 0.000 0.000 0,000 0.000
Node g 0,000 0.000 0.000 0.000 0,000 0.000
Node 11 0,000 0.000 0.000 0.000 0,000 0.000
Node 12 0,000 0.000 0.000 0.000 0,000 0.000
Node 13 0.000 0.000 0.000 0.000 0.000 0.000
Node 14 0,000 0.000 0.000 0.000 0,000 0.000
Node 15 0,002 0,002 0.000 0.000 0,000 0.000
Node 29 -0.006 -0.011 0.000 0.000 0.000 0.000
Node 43 0,010 0,007 0.000 0.000 0,000 0.000
Node %7 -0.013 0,051 0.000 0.000 0,000 0.000
Node 69 0,015 0,080 0.000 0.000 0,000 0.000
Node §3 0,017 -0.113 0.000 0.000 0,000 0.000
Node 07 -0.018 0,149 0.000 0.000 0.000 0.000
Node 100 0,009 0,149 0.000 0.000 0,000 0.000
Node 111 0,019 0,187 0.000 0.000 0,000 0.000
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Bending stress (fy,) and shear stress (7y,) results; from Strand 7 for Own model

rectangular section cantilever beam.

SYSTEM: Strand? Release 2.1.1
FILE  F:\Dissertation 2012\My WSc Dissertation 2012\Dissertation\My Dissertation by Strand7\3Dp from 20\0wn 3D\Meshs. st7
TINE: 13 August 2012 258 pm

Model: Mesho

Result type: Plate stress
Coordinate system: Global X2
Plane: PLANE: Wid-plane
Freedom case: 1: Freedom Case 1
Result case: 1t Load Case 1
Group: Model

Property: 1: Plate Property 1

Stress(0) stress(vy) Stress(7Z) stress(xy) stress(vz) Stress(zx) Stress(User)

(Mpa) (Mpa) (Mpa) (MPa) (Mpa) (vpa) (Mpa)
Plate 14: Node 2 -3.49 -0.016 0.000 -0, 008 0.000 0,000 0.000
Plate 18: Node 2 -3.249 0.012 0.000 -0, 008 0.000 0.000 0.000
Plate 5: Node 6 6,598 1.369 0.000 -0.466 0.000 0.000 0.000
Plate 17: Node 7 3. 249 0.017 0.000 -0.008 0.000 0.000 0.000
Plate 21: Node 7 3,249 -0.012 0.000 -0, 008 0.000 0.000 0.000
Plate 1: Node § 0.199 -0.579 0.000 -0.076 0.000 0,000 0.000
Plate 5: Node 19 6,040 0.374 0.000 -0.118 0.000 0.000 0.000
Plate 5: Node 28 5, 363 -0,621 0.000 0,230 0.000 0.000 0.000
Plate 9: Node 28 5, 963 -0,048 0.000 -0.037 0.000 0,000 0.000
Plate 9: Node 33 5,201 -0.028 0.000 -0.011 0.000 0,000 0.000
Plate 9: Node 42 4.8 -0.008 0.000 0.016 0.000 0.000 0.000
Plate 13: Node 42 4.8 0,031 0.000 -0,016 0.000 0,000 0.000
Plate 13: Node 47 4,405 0.016 0.000 -0.012 0.000 0.000 0.000
Plate 13: Node 56 4.0 0.000 0.000 -0.003 0.000 0.000 0.000
Plate 17: Node 56 4.0 -0.023 0.000 -0.008 0.000 0.000 0.000
Plate 17: Node 61 3,999 -0,003 0.000 -0, 008 0.000 0.000 0.000
Plate 15: Node 63 -1.597 -0.001 0.000 -0.156 0.000 0,000 0.000
Plate 14: Node 63 -1,597 0.004 0.000 -0.158 0.000 0.000 0.000
Plate 15: Node 65 0.000 0,001 0.000 -0, 206 0.000 0.000 0.000
Plate 17: Node 67 1.597 -0,005 0.000 -0,156 0.000 0,000 0.000
Plate 21: Node 67 1.597 -0.001 0.000 -0.156 0.000 0,000 0.000
Plate 21: Node 73 2,800 0.001 0.000 -0.010 0.000 0.000 0.000
Plate 21: Node 82 2,448 0,013 0.000 -0.012 0.000 0,000 0.000
Plate 25: Node 82 2,448 -0.011 0.000 -0.010 0.000 0.000 0.000
Plate 25: Node & 1,999 -0.001 0.000 -0.003 0.000 0.000 0.000
Plate 25! Node 96 1.647 0.009 0.000 0.000 0.000 0.000 0.000
Plate 29: Node 96 1.570 0.020 0.000 0.01 0.000 0.000 0.000
Plate 29: Node 101 1.2 -0.016 0.000 -0.032 0.000 0,000 0.000
Plate 29: Node 110 0.808 -0.052 0.000 -0, 083 0.000 0.000 0.000
Plate 1: Node 110 0,808 0,336 0.000 0,102 0.000 0.000 0.000
Plate 1: Node 115 0.5 -0.122 0,000 0.013 0.000 0,000 0.000
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Appendix: E

Stiffness Matrix for the Vlasov Torsion Theory

do

=0 — =@, bh=—., T1=-M.. B =8
=9 1= 5 1 t 1
do
i=l — q}z:q}_ 82=—. T2=ﬂ‘fr .32:—3
dx
- - _
— - 1 .
A 2! GI, GI . ,
T’) ‘FE —TT] T _GITJ’. —Gfrf';
R I m, =
Bl 2 a2, . . ECw « ECW
B2 GL) -Gk £ I
By 12 I I
1 . . EC EC
T 3. Gl —G L1 LT wE
I 2{32! | | t t I L ] =
n= B(EB-H)
B+2+(p-2)
) eﬂ—l
M=
B+2+(B-2)ef oy [
§ ezﬂ —EﬁeB -1 EC,

p=
eP-1 [3+2+(ﬁ—2)eﬂ

B PB+1l+(B-1eP
eP_1 |3+2+([3—2)eﬂ

e

Source: http://homepage.tudelft.nl/p3r3s/CT5141 chap?.pdf
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