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Chapter 1

Introduction

1.1Introduction

Over the years, different types of train vehicles have been manufactured and, in addition, a
large variety of railway bridge structures have been constructed. Monitoring and management
of different bridge elements is vital issue to understand the real behaviour of structural which
will assist towards more effective decision-making. There was a significant demand on
understanding the dynamic performance of railway bridges and this has increased in recent
years. Fatigue damage assessment of steel railway bridges is one of the most popular subjects
in the literature and several papers proposed methods to carry out the most efficient and more
effective procedure for fatigue damage calculation. Estimating the actual dynamic response
and determination of the real dynamic magnification factor (D.A.F.) for railway bridges may
be complicated and challenging because of the several bridge members with different
sections, size and direction. An approach for determining the most reliable dynamic
amplification value is very important. Obtaining the most reliable dynamic magnification
factors leads to better estimation of remaining fatigue life and provide the most economical

fatigue assessment.

The first section of this dissertation will be an introduction which covers the summary of the
other chapters and the different methods of calculation will also be described briefly. In
addition, the main aims and objectives of the dissertation will be introduced. The second

chapter is the literature review which provides the definition of the dynamic magnification



factor. In addition, a number of previous studies regarding dynamic magnification factors
and dynamic behaviour of railway bridges will be summarised. Moreover, two code
recommendations for calculating dynamic factors will be presented. Another part of this

section will explain different methods for calculating fatigue damage in railway bridges.

The case study is presented in the third chapter. The first section of the chapter describes the
bridge used in this study. The second section will explain the field measurement program
methods for data collection from the bridge and the way of monitoring and the tools that have
been used during monitoring and the data acquisition system. The fourth chapter of this
dissertation will present the results and discussions. The first section of this chapter will
provide the field measurement data of the bridge. The second part will present the dynamic
magnification factors of the bridge estimated through the available field measurements,
Calculation of the dynamic implications by using Euro code 1 recommendations will be
shown in section three. The fourth and fifth part of the chapter will cover calculation of
D.AF by using the Network Rail (NR) bridge assessment code equations and the comparison

between the three pre-mentioned results respectively.

The calculation of fatigue damage by using N-R curves using four different methods will be
provided in fifth chapter. First the damage will be calculate by using dynamic responses data,
secondly the damage will be obtained by magnifying the static damage using the three pre-
calculated D.A.F in chapter four. Appropriate data tables will be prepared to compare and
discuss the results. The sixth chapter will be the final section of this study that covers the

conclusions and suggestions for future study.



1.2 Objective of the study

The main purpose of this research is to calculate the most realistic dynamic magnification
factors for a case study bridge in Sweden, based on the recorded field measurements
available for that bridge. The measurements have been carried out during train passages with
different velocities (1km/hr(static), 51 km/hr, 52km/hr and 82 km/hr). Another aim of this
study is to compare the calculated dynamic magnification factors with the ones obtained by
bridge code recommendations. In this case, two different codes which are most widely used
in the U.K and Europe, i.e. Eurocode 1 and the NR assessment codes, have been considered.
In addition the actual fatigue damage will be calculated and compared with the damages

obtained through the use of the calculated dynamic magnification factors with static stresses.

1.3 Methodology

This section provides a summary of the methods that will be used to calculate the dynamic
magnification factor of the bridge at different points for a given span. Undoubtedly, there are
several methods of calculation of dynamic amplification factors. One of the most common
methods 1s creating a finite element model for the train and using numerical the direct
integration method; the other method is creating a finite element model in a software and
calculate the deflection due to moving loads. These methods are recommended by a number
of researchers but they assume train axles as moving point loads. In this dissertation, field

measurement data is used to obtain the most realistic dynamic magnification factors.

The collected data from field measurement was massive and recorded under different train

speeds; in this dissertation the data for velocities of 1km/hr, 51km/hr, 52km/hr and 82km/hr
7



have been used. MATLAB software will be used to re-arrange the large amount of data and
convert strains into stresses by multiplication by the Modulus of Elasticity of 200 MPA. Then
for every recorded single point on different members, the dynamic amplification factors were
calculated considering the maximum stress response of the point. Following, an Excel spread
sheet has been created to obtain the dynamic magnification factors using EUROCODE 1 and
NR code recommendations. Finally a typical special spread sheet was used to obtain stress
ranges from the stress histories by using the rain flow counting method and another spread

sheet has been created to calculate fatigue damage based on the S-N curve method.



Chapter 2

Literature Review

2.1 Dynamic Amplification Factor (DAF)

Undoubtedly the number of train passages over bridges is rising in modern traffic as a result
of population growth worldwide. The number of railway bridges constructed has increased
since the beginning of last century. In the United Kingdom most of railway bridges are
constructed from steel which is considered as one of the metals most subjected to fatigue
damage. That leads to increased importance of and interest in the consideration of dynamic
effects of trains on railway bridges during the train passage. In addition the speed increment
of trains as well as increasing the axle loads makes the checking of bridge member safety
more significant in order to estimate the quantity of dynamic effect on bridges and consider it

during design and assessment (Marques et al. 2009).

Traditionally, the calculation of fatigue damage has been carried out by increasing the static
stresse by multiplying with specific dynamic amplification factors obtained from the codes
(Liu et al. 2012). A dynamic amplification factor can be defined as the ratio of the absolute
dynamic response to the absolute static response (fig 1). In the past, while assessment of steel
bridges considered the speed of the train, it did not consider the increasing of fatigue damage
due to resonance of the bridge while the train crosses it. This may cause over or under
estimation of fatigue life of bridges that may lead to uneconomic assessment or replacement.

Therefore, the analysis of actual/real damage in the case of fatigue assessment is a vital issue.
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Figure (1) The difference between static and dynamic response of a bridge detail.

2.2 Previous studies:

Although there are a number of research papers and a number of different calculation
methods regarding the dynamic performance of railway bridges, there are limited studies on
obtaining more accurate dynamic amplification factors through field measurements. In this
section, the previous studies and different methods of calculation of dynamic factors and

fatigue damage are briefly described.

The problem of dynamic magnification factor has been found in the 19th century by Paulter
et al. (1991) and Willis (1849) carried out laboratory tests on cast iron beam models.
Following that, several efforts has been done in order to investigate that problem. It was
believed that the American Society of Civil Engineering (ASCE) published the first most
important paper in 1931 regarding this problem. They made some recommendations based on

the data collected from field measurements and they concluded that there is a difference
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between the bridge deck dynamic response and longitudinal members, therefore they
suggested different magnification factors for each. Ruiz-Teran and Aparecio (2006) used the
vibrational method to calculate the dynamic amplification factor of cable stayed bridges. In
their paper they concluded that the dynamic amplification factors might be larger than 2 for
sudden applied loads to the system. They therefore stated that the guidelines for calculation
of DAF for cable bridges is under estimated because it provides the value of 2 as the upper
limit, hence they suggested that it should be revised. Also, they suggested to carry out new
research depending on different internal forces in conventional cable stayed bridges to

calculate DAF in order to use them as the base of guidance for the design.

Enochsson and Elfgren (2008) carried out a study regarding increasing loading carrying
capacity of the Haparanda railway line in Sweden from 22.5 tons to 25 tons. They calculated
dynamic magnification factors for five existing railway bridges; the Kerasjokk bridge has
been chosen to monitor the toughness, deflections through strain gauges and assessment.
They calculated the dynamic amplification factors using code recommendations and they also
developed a finite element model for the bridge. It was concluded that the dynamic
amplification factors obtained from measurement are slightly lower than those obtained from
the model and codes. They have decided to consider the magnification factors obtained from
strain gauges as the actual ones. It was stated that the fatigue capacity of the floor beams are
under estimated, therefore they decided that the bridges can carry an axle load more than 250

KN.

Lee et al. (2011) carried out analysis of bridges under moving trains as a beam and moving
masses model in order to get the most reasonable dynamic magnification factors for fatigue
assessment of short simple railway bridges in Korea. In their calculations they considered the

stiffness, span length of the bridge, the type and speed of trains as the most significant
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factors. They compared their results with the Korean code recommendations and they found
that the code overestimated the DAF values in terms of fatigue assessment. They
recommended only 50% of impact factor to be used for design instead of 65%. In addition, it
was found that very short simple bridges with spans not exceeding the maximum axle spacing
are more subjected to fatigue damage. Furthermore they showed that the dynamic

magnification factors for such bridges can rise with free component vibration.

In order to examine the structural behaviour and fatigue assessment of the Trezoi bridge,
Marques et al(2009). have carried out a finite element analysis by using the SOLVIA
software. In addition, they established a numerical model by comparing with the field
measurements. Fatigue damage of the bridge has been calculated using the fracture
mechanics concept and damage accumulation method; they showed that the results in both
situations are similar and they found that the annual traffic growth has a great impact on

increasing fatigue damage to higher levels.

Liu et al. (2009) prepared a paper in order to investigate the impact of train interaction with
bridge on the dynamic response of the bridge and dynamic amplification factors. A finite
element model analysis was carried out in order to calculate the effects of significant
parameters such as resonance, damping, the ratio of natural frequency of the train to that of
the bridge and the speed as well as the mass of the train. They concluded that the dynamic
amplification value peaks while the vehicle passage produces resonance similar to the bridge.
In addition they showed that the dynamic magnification factor is reduced due to increase in
the natural frequency of the train. The greatest reduction will happen when the natural
frequency of the train is slightly higher than the bridge one. Furthermore it is stated that the

dynamic interaction increased with increasing train to bridge mass ratio.
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Zhou et al. (2012) has carried out dynamic tests for high speed trains passing over composite
railway bridges. They prepared a finite element model for the single span of the Sesia viaduct
in Italy and examined six types of structural details in the bridge in order to find the most
critical point for fatigue damage. They used the S-N curve and Palmgren Miner rule in
combination with rainflow counting to obtain fatigue damage results. They concluded that the
dynamic fatigue damage of each detail can be as twice as the static for a single train passage.
In addition they determined the load carrying fillet welds around the gusset plate of the

diagonal bracing as the most critical points for fatigue damage.

Another study has been made by Gu et al. (2008) in order to calculate the dynamic impact on
railway bridges by using code recommendations as well as finite element analysis. The bridge
over the M25 (structure ID :VTB2 93B) was chosen to analyse by simple hand calculations.
Finite element model and direct integration method was used to obtain eigenvalue buckling
modes. The analysis has been created under 145km/hr and 90 km/hr train speeds and the
result was dynamic impact value was found equal to 1.211.They stated that the dynamic
amplification factors and fatigue damage obtained by direct integration method is more

reliable than code equations.

Ajka and Hartnett (2007) carried out a study regarding determining the effect of speed and
damping on the dynamic response of bridges and dynamic amplification factors. They
prepared a versatile numerical model for that purpose. Three dimensional finite element
model was created and they used direct integration method for solving the equations of

motion. It was concluded that the magnitude of dynamic magnification factor is increased due

to increase in velocity, nevertheless they showed that this trend is not regular and in some

points it can be fluctuating. In addition they showed that the dynamic amplification factors

13



will be increased with increasing mass parameters but up to a speed parameter of 0.25 other

trend might be downwards.

Marjka and Hartnet (2009) established a research paper to examine the response of an
existing railway bridge during the train passage. Their investigation was based on the effect

of random train irregularities and the bridge skewness on dynamic behaviour of the bridge.

They developed a dynamic bridge interaction model, obtained dynamic magnification factors
based on displacements and made a comparison with current code recommendations. The
bridge which was analysed was simply supported and made of wrought iron. Several trains
including both passenger and freight trains were passed over the bridge with different
velocities. The dynamic amplification factors for displacement were calculated and were
found not being more than 10% and this compared with EN1991-2 which was almost 2.5%.
Finaly they found that the skewness results in an increase in fundamental frequency. This

lead to a shift in the dynamic amplification factors towards higher speeds.

Hamidi and Danshjo (2010) carried out a study to investigate the impact of train velocity, the
number of axles, the distance between them and the length of bridge span on the dynamic

amplification factors and compare them with code recommendations.

The dynamic response of four bridges with 10, 15, 20 and 25 meters span were calculated
under train speed ranging between 100 to 400 km/hr speed with an axle distance of 13 to
24m. In their research, they showed that the calculated dynamic factors from their model in
most cases were higher than the code recommendation. In addition, they claimed that there

was a large increase in dynamic magnification factor values with increasing train velocity.
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Furthermore, they found that the change in axle distance to span ratio has a considerable

impact on dynamic magnification factors .

Leander et al. (2009) conducted research to report the result of inspections on a bridge in
central Stockholm and compare them with the theoretical expectations. The main purpose of
the study was fatigue crack assessment and determination of the remaining fatigue life of the
bridge. It was found that there was not full agreement between the stress ranges obtained
from true data through field measurements and the theoretical values. It was concluded that
the service life of the bridge is well passed although they found some cracks in the main
girders. It was believed that more inspection was needed to detect fatigue cracks on
transverse beams and stringers. Finally they made several monitoring procedures to keep the
bridge in service. A large amount of data was collected to use as a base for further research

and some strengthening was decided for the bridge.

The research carried out by Imam et al. (2006) was in order to find a more efficient procedure
to calculate more reliably the fatigue life for old riveted rail bridges. They have made a finite
element analysis of a typical riveted rail bridge in UK. The impact of several parameters on
fatigue damage were examined such as dynamic magnification factors, Young’s Modulus and
the fixity of the connections as well as classification of fatigue details. It was shown that the
connections of stringer and cross girder were critical in terms of fatigue damage. In addition
it was found that the fatigue damage of connections will be increased with increasing axle

loads.

Moreno Delgado and dos Santos (1997) have made a research paper to show the effect of
mass and stiffness of the bridge, the stiffness of the train as well as track irregularities on
bridge dynamic response during passages. They found that the impact of stiffness and track

irregularities on the dynamic response was very significant. It was concluded that more

15



flexible bridges had higher dynamic magnification factors than rigid bridges; also they stated

that the roughness of the bridge had considerable impact on dynamic amplification values.

Song et al. (2003) proposed a three dimensional finite element model in order to investigate
the impact of train-bridge interactions on dynamic response of bridges. They analysed a
simply supported composite bridge and they carried out a comparison between obtained
dynamic magnifications with previous research and experimental values. It was found that
the dynamic amplification factors obtained from their analysis exceeds the design code
recommendations. Furthermore they showed that the speed and train irregularities have

considerable effect on dynamic magnification factors.

Khadri et al. (2013) developed a vehicle-bridge model to investigate the consequence of
several parameters on bridge dynamic magnification factors. It was concluded that the effect
of roughness on dynamic response of railway bridges is significant and it was also shown that
the discontinuity of a rail causes increase of dynamic magnification factors. In addition the
most critical positions of rail discontinuity were determined as L/12 and L/4 where L is the

span.

Herwig and Bruhwiler (2011) have written a paper regarding the effect of running train on
dynamic response of bridges and fatigue damage. The field measurements of one track
railway bridge have been used to examine the dynamic behaviour of the bridge and calculate
more realistic dynamic amplification factors. It was shown that the train irregularities have a
vital effect on dynamic magnification factor values. In addition it was found that the train

velocity has a significant impact in terms of fatigue damage.

Cheng et al. (2001) investigated the effect of train structure on the dynamic response of

bridges. A special model was prepared in order to examine the interactions between the track

16



and the railway bridge. The moving train was modelled as a series of two degree of freedom
mass spring damper system instead of wheel positions and a lower beam element was
proposed to represent the bridge. The two models connected by a series of mass spring
dampers to model the rail bed. It was found that the impact of the track structure on the
dynamic response of the bridge is not considerable nevertheless the effect of bridge structure

on the track dynamic response is significant.

Another research study was carried out by Bjorklund (2004) to explore the dynamic
characteristics of an existing railway bridge under high train passage over 200km/hr. The
finite element model of the bridge was developed by the LUSAS software and the train
passage was assumed as constant and represented by moving axle loads. Parameters such as
track irregularity and bridge-train interactions were neglected in the analyses. The speed of
the train was considered as the most significant parameter affecting the dynamic performance
of the bridge. It was concluded that the dynamic magnification will be increased due to an
increase in train velocity and it peaks several times between 20km/hr and 300km/hr. In
addition it was shown that the maximum resonance will occur in the middle of the bridge
however the critical position for optimum dynamic amplification factors will be the edges.
Furthermore, it was stated that bridge with higher density peaks dynamic magnification

factors with lower train speed than the lower density ones.
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2.3 Code recommendations for calculation of D.A.F

This section will present the equations provided by two bridge codes, Eurocode 1 and the NR

assessment code.

2.3.1 Eurocode 1

BS EN 1991-2000 part 2 which is about “Actions on structures, Traffic loads on bridges” has
created a set of equations regarding dynamic amplification factors of railway bridges. Annex
D of the code has the equations for calculation of D.A.F for fatigue purposes. According to
this code the dynamic magnification factors for each real train regarding fatigue assessments
can be calculated by the following equation: 1+1/2( ¢ + 122 ¢ )

(D1)

The values of ¢ and @'can be obtained by these equations bellow.

, K

KK D-2)
with
K=% forL < 20m (D.3)
kzm for L > 20m (D.4)
and

o

@ = . e .

"—0.56¢ 100 (D.5)
where:

v is the maximum speed of the vehicle permitted (m/s)

18



L is the determinant length Lg in meters which can be calculated according to clause 6.4.5.3

as follows:

1- Determinant length can be obtained from table 1( 6.2 of Eurocode 1.)

2- If the value of Lg is not present in table 1(6.2in Eurocodel) the code recommends the

influence line of deflection of an element as L or alternative values should be provided .

3- If the stress history of a particular member of the bridge depends on several effects, each

which regarding a certain structural behaviour, then each effect should be calculated due to

suitable determinant length.

Table 1 (6.2 in the Eurocode 1) - Determinant Lengths (Ly)

Case

Structural element

Determinant length Lo

Steel deck plate: closed deck with ballast bed (orthotropic deck plate) (for local and
transverse stresses)

1.1
1.2

1.3
1.4

2.1
2.2

23

Deck with cross girders and continuous
longitudinal ribs:

Deck plate (for both directions)
Continuous longitudinal ribs

(Including small cantilevers up to 0.5m)a
Cross girders

End cross girders

3 times cross girder spacing

3 times cross girder spacing

Twice the length of the cross girder
3.6m

Deck plate with cross girders only:
Deck plate(for both directions)
Cross girders

End cross girders

Twice cross girder spacing + 3m
Twice cross girder spacing + 3m

3.6m (b)

Steel grillage: open deck without ballast bed( b) (for local and transverse stresses)

19




3.1

3.2

Rail bearers:

- as an element of a continuous grillage 3 times cross girder spacing
- simply supported Cross girder spacing + 3 m
Cantilever of rail bearer 3.6m

Table 1( 6.2 in the code) ( continued )

3.3

34

Cross girders (as part of cross girder/ Twice the length of the cross girder

continuous rail bearer grillage)

End cross girders 3.6 m(b)

a In general all cantilevers greater than 0.5m supporting rail traffic actions need a special
study in accordance with 6.4.6 and with the loading agreed with the relevant authority
specified in the national annex.

b It is recommended to apply ¢3

2.3.2 NR code recommendations

The network rail code NR/GN/CIV/025 clause 4.3.2.2 to 4.3.2.4 provides a set of equations

to calculate the dynamic amplification factors for railway bridge members including factors

related to fatigue assessment. Clause 4.3.2.2 of this code deals with the calculation of DAF

for longitudinal members using table 2 (table 4.5 in the code) as follows:

Table 2 Dynamic amplification factors for longitudinal members(table 4.2 in the code)

Dynamic Increment ¢ for
bending

Dynamic Increment ¢

for shear

Normal

permissible speed < 100mph

track maintained for | @1+ @11
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Track maintained for 1
o+ )

Permissible speed >100mph-125mph

Fatigue calculation only 0.5 (g1 + % )

2/3 x ¢ for bending

p1= representing inertial response of the structure

1-k+k*

- v
447L¢n0

L.

: Lo —l)ef(zo) ] but>0

(L
=a[56e © +50
pu=af (80

where :

a=0.0002v but > 0.02

where:

equation ( D.6)

equation (D.7)

equation (D.8)

equation (D.9)

Lo 1is the determinant length in meters obtained from table (3) (table 4.6 in the NR code)

L is the member span centre to centre from supports in meters

n, 1s the fundamental natural frequency in Hertz of the structural member .

v is the speed in mph
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Table (3) Determinant length (table 4.6 in the NR code)

Element

Determinant Length LO

Steel and Wrought Iron

Deck plate
Discontinuous spanning longitudinally
Discontinuous spanning two ways
Continuous over ribs or stringers

Rail Bearers
Continuous

Simply supported

Twice cross girder spacing + 3 meters
Three times cross girder spacing

As for 4 pan continuous beam

3 times cross girder spacing

Cross girder spacing + 3 meters

The natural frequencies (n,) can be calculated using equations (4.6 to 4.8) in clause 4.3.2.3 in

NR code as follows:

High frequencies (HF) no=94.7L"™

Equation ( D10 )

Low frequencies (LF)
for 4 meters <L <20 meters

No = —
L

no=23.58L""  for 20m < L < 100meters

Equation (D.11)

Equation (D.12)




The dynamic amplification factors for transverse beams can be calculated according to clause

4.3.2.4 of NR code. The code provides three equations to calculate D.A.F , the parameter of

speed and the direction of a member according traffic is considered as shown in table 4.

Table 4 dynamic increment value (table 4.5 of NR code)

Dynamic increment

Dynamic increment fo ¢rr

@r for bending shear
Normal track maintained for 0.008v
permissible speed <100mph
Track maintained for permissible 1.3(0.008v)

speed > 100mph-125mph

Fatigue calculation only

If the transverse members are not with the direction of train, the dynamic amplification factor

is calculated as follow The Value of D.A.F= 1+ ¢r

If the transverse members are not with the direction of train , the dynamic amplification

factor is calculated as follow:

o=0to 25" [1+or]

o> 25<65° [ 1+( @1 cos*at+@sin?a)]

@ =65"t090"  [1+¢]
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where :

@t =dynamic increment from table 4

a = the angle of skew of the transverse member and the truck direction

¢ = as designed in the beginning of this section

2.4 Calculation of fatigue damage and rain flow counting using S-N Curve approach

No doubt that trains produce irregular stress histories when crossing bridges and these
arbitrary stress histories require an arrangement in an appropriate method to enable counting
the stress ranges. The most common method in calculating stress ranges and fatigue damage
is called the S-N curve method (for variable amplitude loading), also called as the Palmgren-
Miner rule. According to this concept, the fatigue damage at any particular stress range is
directly proportional to the number of repeated cycles at this range. The two figures 2A and

2B explains this issue.

S-N curve

o, VITTRVRTY w WVW time

N, N; N, N e leBle "2
Figure 2 A (S-N) curve Figure 2B (repeated cycles)
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. n  n2 N3
Fatigue damage = ——

—t—
1 N2 N3

l’li_
Sumﬁ_1

ni number of applied cycle at stress range level i

Ni Fatigue life at stress range level 1

BS5400 part 10 clause 11.2 prefers the S-N concept and provides suitable tables to classify

steel details with respect to their fatigue behaviour.

Slatic imilations

Constant amplitude loading
m clean ar

_E T T TTTT Effective curve obtained under
= - wariable amplitude loading,
=2 equivaleni o changing slope of
2 ; ~ o - N curve above N =107
iy | ~
s | -
2 |
E I
- I
L I .
1 107
Endurance & l[cycles] - jog scale
Figure 2C (BS5400 part 10)
n n _Or
— =T ]m when o+ > oo Equation N1
N 10" oo
n n _Or. o
— =T ]m when o<oo Equation N2
N 10" oo
Or is applied stress range

Oo is the allowable stress interims of fatigue provided in BS5400 part 10 which is

vary due to section classification type.
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Chapter 3

Case study

3.1 Description of the bridge

Figure (3) Soderstrom bridge view in Stokholm central Sweden (Wallin et al 2011)

The bridge considered in this study is the Soderstrom bridge in central Stockholm (shown in
Figure 3). It links the main railway between northern and southern parts of Sweden. It is a six
span continuous steel bridge. Almost 520 trains are crossing the bridge including freight and
passenger trains (Leander et al. 2009). The total length of the bridge is 190 m and distributed
between spans as follows (27.0, 33.7, 33.7, 33.7, 33.6 and 26.9m) from the north to the south
of the bridge. Figure 2 shows the spans of the bridge. The bridge has six roller bearings and
one fixed on the south position. The bridge has two railway tracks on wooden sleepers which

are bolted to the top flange stringer beams (Fig 5) (Wallen et al. 2011). The structure of the
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bridge consists of stringers which are connected to the cross beams by welds and the cross

beams are welded to the main girders as well. Fig 5 shows the details of the welding of three

members.

270 | 337 | 33,7 L 3.7 | 3,6
158,60
.
@ @ @ @ @ @,; (o
I I
I
i1 7
-
) I -
-~
T

Figure( 4) Plan and view of the Soderstrom Bridge over Malaren river.

Floor beam Bridge cross section Walkway
cross section
I 'ﬂ\ T_.
Small doct Large duct Steel grating
— —_— T
)
I II
|I II
Track 2 Track 1 | L
1t 11 1¢ [ - ;
LY

e \ Steeper

- Tendon

Fig (5) cross section of the Soderstrom bridge (Wallen et al. 2011)

The bridge has a bracing system to resist three actions, wind bracing, brake bracing and
horizontal force resistance bracing system. The wind bracings are linked to the midpoint of
the floor beams. A brake bracing system was provided near the supports in order to transmit

the force generated by acceleration to the main girders. The final bracing system is a zigzag
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bracing which connects every two parallel stringers and their duty is decreasing the risk of
torsion and lateral movements. The wind bracing members are positioned in the bottom of
stringer beams, however the zigzag and brake bracing ones link the top flange of the floor
beams to the main girder plates. Figure 6 explains the structural components of the bridge

between supports 7 and 8.

Main beam Floor beam Stringer beam  Wind hracing Zigzag bracing

Figure (6) showing the plan of the structural system of Soderstrom bridge wallin et al( 2011)

The connection of all members of bracing system are bolted, however the main members are

connected by welds. Figure 7 shows the connections of the members in section.
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fig(7) cross beam, stringer and wind bracing connections Leander 2010 (23)

The bridge rests on two abutments in the first and last end supports of the bridge whereas the
rest of the supports are bearing over two columns in each support, the columns being
supported by a concrete slab foundation along the width of the bridge. As mentioned before,
the trains crossing railway bridges can be divided into passenger trains, service (empty
locomotive) trains and freight trains. According to the Sweden traffic plan in 2008, commuter
trains account for almost 90% of all train passages, the other types having only a 5%
contribution each. In addition it was shown that the track speed on the bridge was limited to

82km/hr recently. (Wallin et al. 2011).

29



3.2 Field measurements

3.2.1 Monitoring program

In 2008, a monitoring program has been established between supports seven and eight of the
Soderstrom bridge sponsored by the Swedish Rail Administration (Banverket). The first
measurements of the program started on 30 July 2008, the data was collected for a period of
43 days (Wallen et al. 2011). All bridge elements (cross beams, stringers and main girder)
were provided with 54 strain gauges and five accelerometers. Another two strain gauges were
fitted to the rail to examine the interaction between the track and the bridge (Leander et al.
2011). Strain gauges are separated between two regions, mid span region (points A,C,D,E.I)
and the region close to the supports (points B,F,G,H,J); the gauges are fitted to the top and
bottom flanges of the bridge members. Figures (8A) and (8B) indicate the distribution of the

strain gauge in both of these regions.

Figure(8.A) locations of strain gauges in mid span region.
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Figure (8.B) strain gauge positions near the support region.

3.2.2 Data acquisition system

A special program was proposed to collect data from field measurements; a ML801 amplifier
manufactured from Hettinger Baldwin Messtechnek was used to transfer the data to the
laptop by using catman professional software. The data from 62 channels recorded the signals
from strain gauges and accelerometers. 400 HZ was used as sampling frequency and before
AD-conversion they applied a cut off of 100 HZ as analogue low pass filter. The resolution of

the system was 20 bits which has an ability to record around 0.03pum/m (Wallin et al. 2011).

3.2.3 Calibration measurement

The Swedish RC6 locomotive was used to load the bridge having a total weight of 78.0
tonnes and the distance between its axles being 2.7m+5.0m+2.7m (see figure (8C)). The

locomotive crossed the bridge with the speeds between lkm/hr to 82km/hr while only the
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west track was loaded. All measurements have been carried out during night time and there

was no other traffic on the bridge during the test Leander et al. (2009).

Figure (8c) RC6 Swedish locomotive used for field measurements (Wallin et al. 2011)

The field measurements were recorded at different times with different velocities for different

points and members as shown in table (5)

Table (5) time and file names for the recorded data

Nt | Starttid | Lok | Spar Hil.';tn]'llg .;Hasti,ghet Filnamn
|: Cl 'V:l |: S :"'1 :I |: ];-:]11 ]1 :I

1 | 01:53:30 | Ref W N &0 ORO730_499
2 | 0Z:00:04 | Ref V S 8-10 OE07T30_500
3 | 02:07:29 | Rech v N 82 DR0730_500
4 | 02:13:23 | Keh Vv o) 10 00730 501
5 | 02:24:16 | Beh Vv o) Tn OR07T30 502
6 | 02:27:44 | Beh v N 70 020730 502
T | 02:31:24 | Rehfi V o) 0 OR0730_503
& | 02:36:32 | Heh WV N 1-12 0a0730_a03
9 | 02:49:20 | Ref v S 1 DR0T30_505
10 | 03:13:05 | Ref v s 1 OR0730_507
11 [ 03:30:45 | Reh V N 51 DR07T30_508
12 | 03:40:03 | Ref v S 1 020730_509
13 | 04:00:39 | Ref V N a2 00730 511
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3.3 Plotting stress history from the data for different velocities and members

The data file shown in table 5 are mat lab files, each file provides millions of data recorded
for a particular point. However, there are some errors in reading some of the files , hence the
corrected files have chosen as a resource data in this dissertation. The data with velocity
(1m/h) are chosen as a static data, and the data with velocities (10m/hr, 5S1mile/hour, 52m/hr,
82m/hr) have plotted by using Matlab software in order to obtain the maximum and minimum

stress points. figures (9) to (160) illustrate this issue.
3.3.1 Graphs for 1km/hr (static)
3.3.1.1 stringers

A- mid span points:

static, P3stringers mid span
T \ T

-
ra

Stress(MPA)
o o o o) o |
- ra = o) o ()

m
[=x}

6

84

g2 | | | 1 | | | | |
260 280 300 320 340 360 380 400 420 440

Tirme(sec)

Figure(9) static stress history at point 3
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static, Pdstringers mid span

70 T T T T T T T

B5 -

Stress(MPA)

501 ¥ 320.5 |
W 4789
.‘.

45 | ! ! ! | | |
260 280 300 320 340 360 330 400
Tirme(sec)

| 1
420 440

Figure(10) static stress curve for point(4) (midspan)

static, PEstringers mid span

Stress(MPA)

4 1 I 1
260 280 300 320 340 360 380 400 420 440
Time(sec)

Figure(11) static stress history for point 6

static, PBstringers mid span
78

Stress(MPA)

45 1 1 1 1 I 1
260 280 300 320 340 360 380 400
Time(sec)

420 440

Figure(12)static stress curve for point (8)
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Stress(MPA)

Stress(MPA)

static, PYstringers mid span
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5 — -
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260 280 300 320 340 360 380 400 420 440
Tirne(sec)
Figure(13)static stress history at point 9
static, P10stringers mid span
52 T T T T T T T T T
Ho4406 |
3827
I I I I I
260 280 300 320 340 360 380 400 420 440
Timeisec)
Figure(14) static stress history at point 10
static, P11stringers mid span
45 T T T T T T T T T
40 - —
35+ —
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25 —
20 —
15 —
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10k R -A-EE _
5 -
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280 250 300 320 340 360 3580 400 420 440
Time(sec)

Figure(15) static stress history at point 11
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static, P12stringers mid span
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Figure(16) static stress history at point 12
static, P12stringers mid span
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Figure(17) static stress history at point 13
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B-support points:

static, P29stringers mid span

&= ! ! ! W 4067 ! !
¥--35.88

a5 =

30—
= a5
=
% 2

15

10

5 | I | | |

340 360 380 400 420 440 AB0

Time(sec)
Figure(18) static stress history at point 29
static, P30stringers mid span
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Time(sec)
Figure(19) static stress history at point 30
static, P31 stringers mid span
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Figure(20) static stress history at point 31
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Figure(21) static stress history at point 32

static, P34stringers mid span
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Figure(22) static stress history at point 34

static, P3Sstringers mid span
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Figure(23) static stress history at point 35
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static, P37 stringers mid span
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Figure(24) static stress history at point 37
static, P39stringers mid span
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Figure(25) static stress history at point 38
static, P39stringers mid span
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Figure(26) static stress history at point 39
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static, PA0stringers mid span

Stress(MPA)

340

3.3.1.2 Cross beams

A- mid span region

Stress{MPA)
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1 1 1
360 350 400 420 440 4E0
Time(sec)

Figure(27) static stress history at point 40

st p14 cross beam mid
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Figure(28) static stress history at point 14
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Figure(29) static stress history at point 15
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B- support region
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Figure(30) static stress history at point 42

st pa3 crass beam support
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Figure(31) static stress history at point 43

st pdd cross beam support
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Figure(32) static stress history at point44
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3.3.1.3 Main girders

A- Mid pan
St,pl7
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Ho557 A
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Time(sec)
Figure(33) static stress history at pointl7
St,pl18
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Figure(34) static stress history at point18
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Figure(35) static stress history at point19
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Figure(36) static stress history at point20
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Figure(37) static stress history at point45
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Figure(38) static stress history at point47
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Figure(39) static stress history at point48
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3.3.2 Graphs for velocity (10km/hr)
3.3.2.1 stringers
A- mid-span region

%10, P3,stringers mid span
a0

78

70

Stress(MPA)

60

a5 -

a0 | | | |
235 240 245 250 285 260
Time(sec)

Figure(40) stress history at point3(10km/hr)
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FIGURE(41) stress history at point4(10km/hr)
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%10, PB,stringers mid span
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Figure(42) stress history at point 6(10km/hr)
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Figure(43) stress history at point 7(10km/hr)
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Figure(44) stress history at point 8(10m/hr)
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Figure(45) stress history at point 9(10km/hr)
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Figure(46) stress history at point 10(10km/hr)
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Figure(47) stress history at point 11(10km/hr)
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%10, P12,stringers mid span
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Figure(48) stress history at point 12(10km/hr)
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Figure(49) stress history at point 29(10km/hr)
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Figure(50) stress history at point 30(10km/hr)
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Figure(51) stress history at point 31(10km/hr)
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Figure(52) stress history at point 32(10km/hr)
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Figure(53) stress history at point 34(10km/hr)
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Figure(54) stress history at point 35(10km/hr)

%10, P37 stringers support

265

BB —

B4 |-

B2 -

B0~

a8~

a6 —

24 —

52

Ho2454
¥ 5916

240

&0

| |
245 240 2685 260

Time(zsec)

265

Figure(55) stress history at point 37(10km/hr)
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Figure(56) stress history at point 38(10m/hr)
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%10, P39 stringers support
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Figure(57) stress history at point 39(10km/hr)
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Figure(58) stress history at point 40(10km/hr)
3.3.2.2 Cross beams
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Figure(59) stress history at point 10(10km/hr)
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Figure(60) stress history at point 15(10km/hr)
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Figure(61) stress history at point 42(10km/hr)
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Figure(62) stress history at point 43(10km/hr)
52



3.3.2.3 Main girders

A-Mid span
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Figure(63) stress history at point 17(10km/hr)
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Figure(64) stress history at point 18(10km/hr)
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Figure(65) stress history at point 19(10km/hr)
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Figure(66) stress history at point 20(10km/hr)
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Figure(67) stress history at point 45(10km/hr)
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Figure(68) stress history at point 46(10km/hr)
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Figure(69) stress history at point 47(10km/hr)
3.3.3 Graphs for velocity (S1km/hr)
3.3.3.1 Stringers
A- Mid span region
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Figure(70) stress history at point 3(51km/hr)
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Figure(71) stress history at point 4(51km/hr)
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Figure(74) stress history at point 9(51km/hr)
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Figure(75) stress history at point 10(51km/hr)
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Figure(76) stress history at point 11(51km/hr)
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Figure(77) stress history at point 12(51km/hr)
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B- Support region
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Figure(78) stress history at point 29(51km/hr)
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Figure(79) stress history at point 30(51km/hr)

%41, P31 stringers support

370 3705 371 3715 372 3725 373

3735 374
Time(sec)
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Figure(83) stress history at point 34(51km/hr)
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Figure(88) stress history at point 40(51km/hr)
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Figure(92) stress history at point 43(51km/hr)
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3.3.3.3 Main Girders

A- Mid- span region

val pointl?

40 T

Stress(MPA)

368 370 372 374 376 378
Time(sec)

380
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Figure(95) stress history at point 18(51km/hr)

Va1 ,pl9

3%85 3.':'0 3?|'5 3E|!D 3E|!5 39|D 395
Time(sec)
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3.3.4 Graphs for velocity (52km/hr)
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Figure(105) stress history at point 8(52km/hr)



Stress(MPA)

Stress{MPA)

Stress(MPA)

Y52, P9 stringers mid span

30 T T T T T T T
25 -
20+ -
15 -
X 2471
" w1081
10 . ]
5 .
D = —
1 1 1 1 1 1 1
244 2445 245 2455 245 2465 247 247 5 248
Time(sec)
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Figure(107) stress history at point 10(52km/hr)
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B- support region
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Figure(109) stress history at point 12(52km/hr)
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Figure(110) stress history at point 29(52km/hr)
W52, P30, stringers support
45 T T T T T T
A0
SIH
30
T H 2444
% V. 2513
LH Lh
o0 I ! I I I I I
243 243.5 244 244.5 245 2455 245 246.5 247
Time(sec)

Figure(111) stress history at point 30(52km/hr)
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Figure(114) stress history at point 34(52km/hr)
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Figure(116) stress history at point 37(52km/hr)
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Figure(120) stress history at point 14(52km/hr)
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Figure(121) stress history at point 15(52km/hr)
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Figure(122) stress history at point 42(52km/hr)
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Figure(123) stress history at point 43(52km/hr)
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Figure(124) stress history at point 44(52km/hr)
3.3.4.3 Main girders: A- Mid span
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Figure(125) stress history at point 17(52km/hr)
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Figure(126) stress history at point 18(52km/hr)
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Figure(131) stress history at point 48(52km/hr)
3.3.5 Graphs for velocity (82km/hr)
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Figure(138) stress history at point 11(82km/hr)
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Figure(139) stress history at point 12(82km/hr)
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Figure(145)stress history at point 35(82km/hr)
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Figure(147)stress history at point 39(82km/hr)
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3.3.4.2 Cross beams : A- Mid span region
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Figure(150)stress history at point 15(82km/hr)
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Figure(153)stress history at point 44(82km/hr)
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3.3.4.3 Main Girders : A- Mid span region

StressMPA)

10 1 1 1 1 1

455 450 491 4592 493 494 45;5 AEIiEi AEIi?' 495
Time(sec)
Figure(154)stress history at point 17(82km/hr)
V2 ,p18
15 T T T T T T T
£
=4
&
20 | | 1 | | | 1 1
489 490 491 492 A93 494 495 A96 497 495
Time{sec)
Figure(155)stress history at point 18(82km/hr)
W82 ,p19
=] T T T T T T T
a5 — —
a0 - Ho497 2 J\ —
W 4T BS
g TN -‘WWWW
e -
&
40 — —
35 —
a0 | | 1 | | | 1 1
489 490 491 492 493 494 495 455 497 495

Time(sec)

Figure(156)stress history at point 19(82km/hr)
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Chapter 4

Results &Discussion

4.1 D.A.F from field measurements

The provided field measurements are used to get the maximum stress response at each
recorded point at different velocities (1km/hr(static), 10m/hr, 51km/hr, 52km/hr and
82km/hr). Then, the D.A.F at any point are calculated for all different velocities by using the

equation below:

_ Maximu dynamic stress response

D.AF - -
Maximun static stress response

The results are tabulated as follow:

Table 5 D.A.F from field measurements for stringers

points Velocity Max stress Average DAF
(km/hr) response static stress
(N/m2)

3 1 721997 | | e
3 1 71.3302 PRX O
3 1 754848 | | s
3 10 e KT T — 1.056
3 51 PR XX — 1.003
3 52 FC Y T [ — 1.088
3 82 ([T 27 [ — 1.048
4 1 67.0451 | | s
4 1 67.2223 YAC I
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1 RV E———
10 67.0274 | - 0.997

51 673157 | o 1.002

52 67.0468 | -—--mmmemmeo- 0.998

82 66.9099 | --omeemeeee- 0.996

1 () 7/ | | RN ——
1 33.2351 33.0993 | oo
1 329759 | | e
10 P XX E— 0.986

51 345] 530S 1.032

52 343366 | -mm-mmmemmeee- 1.037

82 33.6603 | --eeeemee- 1.017

1 722883 | | e
1 72.4606 72264 | e
1 720452 | | e
10 P RCI T E — 0.999

51 725508 | e 1.004

52 PRI I — 1.009

82 PP [ — 1.007

1 238036 | | -
1 25.3672 24975 | oo
1 257553 | | e
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9 10 P —— 1.099
9 51 254612 | e 1.019
9 52 KL N — 1.085
9 82 31.0097 | e 1.242
10 1 495604 | | e
10 1 51.2802 504557 | —ooeee
10 1 505266 | | e
10 10 472738 | e 0.937
10 51 SRR — 1.026
10 52 514026 | —ommoes 1.019
10 82 KL — 1.03
11 1 12174 | | =
11 1 44.4864 43.0328 | oo
11 1 433946 | |
11 10 Vo R AT I e — 1.099
11 51 45.0355 | oo 1.047
11 52 448632 | oo 1.043
11 82 49934 | cmoeoeees 1.16
12 1 343559 | | e
12 1 36.7778 36.0644 | oo
12 1 A
12 10 40.0339 | oo 1.11
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12 51 38.145 | —eeeeemeeeeee- 1.058
12 52 351047 | -mmmeemmmmeene- 0.973
12 82 R e — 1.133
29 1 T L [ ——
29 1 37.8216 379 | e
29 1 379388 | | e
29 10 373624 | e 0.986
29 51 LY XA I e — 0.994
29 52 38.0274 | —mmmmeeememee 1.003
29 82 37.1707 | =emeeeeemeeee- 0.981
30 1 4373 | | e
30 1 44.0258 R I e —
30 1 441385 | | -
30 10 XL e —— 0.998
30 51 42,9598 | e 0.977
30 52 XL R 0.975
30 82 43.5459 | e 0.99
31 1 B3 | I
31 1 37.8216 Y S ——
31 1 379388 | | e
31 10 373624 | -ommmeeemme- 0.986
31 51 37.678 | - 0.994
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31 52 X2 —— 1.003
31 82 371707 | e 0.981
32 1 287295 | | e
32 1 28.8036 287735 | oooemee
32 1 287875 | | el
32 10 28.8165 | -emomoee 1.001
32 51 262142 | oo 0.911
32 52 262947 | —omeeee 0.914
32 82 285427 | e 0.992
34 1 334396 | | e
34 1 33.364 331342 | oo
34 1 325991 | |
34 10 333382 | e 1.006
34 51 341643 | e 1.031
34 52 33.0805 | —ooomeomeee 0.998
34 82 37.0145 | oo 1117
35 1 359131 | | e
35 1 33.8326 331342 | coomee
35 1 325991 | | e
35 10 327891 | e 0.99
35 51 326152 | e 0.984
35 52 AT — 1.137
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35 82 L e — 0.961
37 1 67174 | |
37 1 68.4397 674628 | oo
37 1 667746 | | e
37 10 66.6184 | oo 0.987

37 51 67.7569 | - 1.004

37 52 X I e — 0.984

37 82 X2 N e —— 1.035

38 1 60.5959 | | e
38 1 62.7794 611552 | oo
38 1 60.0902 | | e
38 10 ORI I e — 0.973

38 51 XY A [ — 0.969

38 52 ST —— 0.939

38 82 594284 | oo 0.972

39 1 44.6587 | |
39 1 45.5363 44.6533 | coemmmmmoe
39 1 437649 | |
39 10 40.6345 | oo 1

39 51 VT — 0.997

39 52 423849 | coeeeeooees 0.949

39 82 445846 | - 0.998
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40 1 409855 | | -
40 1 41.182 41.1208 | —-mmmemeeeeeee-
40 1 41.1949 | | -
40 10 40.6345 | - 0.988
40 51 41.2929 | e 1.004
40 52 42583 | e 1.036
40 82 40.7633 | - 0.991
Table (6) D.A.F from field measurements for cross beams
points Velocity Max stress Average static DAF
(km/hr) response stress
(N/m2)
14 1 67.0033 | | e
14 1 66.1063 663987 | e
14 1 659356 | | -
14 10 68.7008 | -mmemmmeeeee- 1.035
14 51 66.5653 | --m-mmemmeeee- 1.003
14 52 66.7617 | - 1.005
14 82 68.6957 | e 1.035
15 1 30,7649 | | e
15 1 30.8615 3(0):7456 N [IStStitniimssees
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15 1 307456 | |
15 10 30.6667 | e 0.997

15 51 NIV — 1.073

15 52 30.8873 | —oommooee 1.003

15 82 L R e — 1.004

42 1 569292 | |
42 1 56.3527 I e —
42 1 571498 | | =
42 10 574429 | oo 1.011

42 51 57467 | e 1.011

42 52 AT —— 1.058

42 82 578632 | e 1.019

43 1 31.905 | |
43 1 35.6007 R L R —
43 1 343736 | | e
43 10 302094 | e 0.89

43 51 S e — 1.091

43 52 335411 | —ooeme 1.0915

43 82 RO A e — 0.904

44 1 527827 | |
44 1 52.6329 527605 | oo
44 1 528358 | | e
44 10 535041 | oo 1.014
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44 51 52.8922 | - 1.002

44 52 539163 | —--mmmemmmee- 1.022

44 82 589839 [ - 1.118

Table (7) D.A.F from field measurements for main girders
points Velocity Max stress Average DAF
(km/hr) response static stress
(N/m2)

17 1 329936 | | -

17 | 35.0966 344461 | ----memmmemeeee-

17 1 32248 | | e

17 10 351417 | —--mmmmmee- 1.020

17 51 353269 | ----mmmmeeee- 1.025

17 52 354107 | —--mmmmmmee- 1.028

17 82 354976 | ----m-mmmme-- 1.029

18 1 119855 | | e

18 | 11.0161 10.7423

18 1 92254 | | -

18 10 11.4026 | ---—----m--—-- 1.061

18 51 10.0048 | ------mmmm-- 0.93
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18 52 SX 725 — 0.84
18 82 A — 1.049
19 1 52583 | |
19 1 54.029 537633 | —commemmee
19 1 54678 | | el
19 10 YL R — 1.061
19 51 ST R — 1.006
19 52 S 50T I e — 1.021
19 82 SV —— 1.024
20 1 63.124 | | e
20 1 63.0951 63.0575 | oo
20 1 629534 | | e
20 10 63.0178 | —omrmeoee 0.999
20 51 PRI —— 0.989
20 52 2T R — 1.01
20 82 X A —— 0.999
45 1 385975 | |
45 1 38.6347 36.8783 | oommememmmeee
45 1 334026 | | e
45 10 S EE) R e — 1.044
45 51 391128 | —oomeeeee 1.061
45 52 39.0355 | —eeemmmeemees 1.058
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45 82 R R e — 1.056
47 1 532393 | | o
47 1 53.401 52.5605

47 1 51.0412 | | el
47 10 RO I —— 1.022

47 51 RN R —— 1.025

47 52 Y A — 1.032

47 82 I A —— 1.04

4.2 D.A.F from EUROCODE 1 equations:

The set of equations D1 to D6 and table 1 presented in chapter 2 are used to calculate
the D.A.F for different elements at different velocities (10km/hr ,51km/hr , 52km/hr,
82km/hr) but these velocities should change to (m/sec) first to use them in the
equations, there value equals (2.7Mile/sec , 14.17 mile/sec, 14.44mile/sec ,22.78

mile/sec) .The obtained D.A.F are presented in table (8) to(10)

Table (8) D.A.F from EUROCODE 1 recommendations for stringers

Velocity (km/hr) Velocity(m/sec) D.A.F
10 2.78 1.060
51 14.17 1.10
52 14.44 1.10
82 22.78 1.13
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Table (9) D.A.F from EUROCODE 1 recommendations for cross beams

Velocity (km/hr) Velocity(m/sec) D.A.F
10 2.78 1.011
51 14.17 1.050
52 14.44 1.051
82 22.78 1.084

Table (10) D.A.F from EUROCODE 1 recommendations for main girders

Velocity (km/hr) Velocity(m/sec) D.A.F
10 2.78 1.007
51 14.17 1.039
52 14.44 1.04
82 22.78 1.065

4.3 D.A.F from N.R recommendation

The equation D.6 to D.12 , with tables( 2, 3, 4) presented in chapter 2 are used to

calculate the D.A.F , the results are shown in table (9) to(11).

Table (9) D.A.F from NR code recommendations for stringers

Velocity Velocity(Mile/hour) | D.A.F(high frequency) | D.A.F(Low frequency)
(km/hr)
10 6.21 1.009
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51 31.69 1.025 1.049
52 32.31 1.025 1.050
82 50.95 1.041 1.083
Table (10) D.A.F from N.Rcode recommendations for cross beams
Velocity Velocity(Mile/hour) | D.A.F(high frequency) | D.A.F(Low frequency)
(km/hr)
10 6.21 1.025 1.025
51 31.69 1.127 1.127
52 32.31 1.129 1.129
82 50.95 1.200 1.200
Table (11) D.A.F from N.Rcode recommendations for main girders
Velocity Velocity(Mile/hour) | D.A.F(high frequency) | D.A.F(Low frequency)
(km/hr)
10 6.21 1.005 1.007
51 31.69 1.017 1.040
52 32.31 1.025 1.041
82 50.95 1.040 1.067

4.4 comparison of D.A.F from all three methods:

For the purpose of comparison of obtained D.A.F , three tables(12 ,13,14) are

prepared :
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Table (12) D.A.F comparison for stringers

velocity | D.A.F D.A.F stringers | D.A.F D.A.F D.A.F
stringers stringers stringers stringers
km/hr From data
From data From EURO | From NR From NR
(support) codel code(h) code(l)
(mid span)
10 1.035 0.980 1.060 1.005 1.009
51 1.024 0.990 1.100 1.025 1.049
52 1.031 0.990 1.100 1.025 1.050
82 1.079 1.002 1.130 1.041 1.083
Table (13) D.A.F comparison for cross beams
velocity | D.A.F cross D.A.F cross D.A.F cross | D.A.F cross | D.A.F cross
beams beams beams beams beams
km/hr
From data From data From From NR From NR
. EURO code(h) code(])
(mid span) (support) codel
10 1.016 0.970 1.011 1.025 1.025
51 1.038 1.035 1.050 1.127 1.127
52 1.004 1.057 1.051 1.129 1.129
82 1.020 1.014 1.084 1.200 1.200
Table (14) D.A.F comparison for cross beams
velocity | D.A.F main D.A.F main D.A.F main | D.A.F main D.A.F main
girders girders girders girders girders
km/hr
From data From data From From NR From NR
. EURO code (h) code(l)
(mid span) (support) codel
10 1.035 1.026 1.007 1.005 1.007
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51 0.990 1.033 1.039 1.017 1.040

52 0.970 1.044 1.040 1.025 1.041

82 1.025 1.033 1.065 1.040 1.067

From the three previous tables, it is observed that there is a difference between the value of

D.AF for different methods. It might be due to the following:

1- The calculation of D.A.F from field measurement is dependent on the stress response
of the element at a particular velocity; however, the Eurocode 1 depends on velocity
and the length of the member. Never the less, using N.R code depends on the velocity

and type of the train (high frequency) and (low frequency).

2- Using field measurements to calculate D.A.F the region of the element is considered

(support region) or (mid span region), but the other two methods do not consider that.
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Chapter 5

Calculation of Fatigue Damages

One of the advantages of getting D.A.Fs is the calculation of the fatigue damages and

remaining fatigue life of the structure. In this dissertation, fatigue damages are calculated by

four different methods as clarified below:

1-

Considering graphs (1) to graph (150) shown in chapter (3), the stress ranges are
calculated for all points using a certain spreadsheet. Then, another spreadsheet is
used to calculate the actual fatigue damage using S-N curve equations (N1) and (N2)

discussed in chapter 2.

The maximum static damage was calculated for all points using the similar procedure

of the above method.

The fatigue damage, due to field measurements, is calculated by multiplication of

static damage with the D.A.F s from tables (6) to (8).
Fatigue damage = D.A.F field measuremets X Static damage

The fatigue damage due to EUROCODE 1 recommendations is calculated by

multiplication of static damage with the D.A.F s from tables (9)to(11).

Fatigue damage = D.A.F Erurocod 1 X Static damage
Similarly fatigue damage due to NR CODE 1 recommendations is calculated by

multiplication of static damage with the D.A.F s from tables (12)to(14).

Fatigue damage = D.A.F nrcode X Static damage

The obtained values are shown in table(15 ) to table( )
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Table (15) Fatigue damage comparison for stringers

region Velocity Damage from Damage Damage Damage Actual
&points DAF data from Euro | from NR (h) from damage
code 1 NR(1)
v10 p3dmg 4.6482E-09 4.76048E-09 4.51347E-09 | 4.5314E-09 | 1.47946E-08
mid v10 p4 dmg 1.29093E-08 1.32211E-08 1.25351E-08 | 1.2585E-08 1.09638E-08
Span
v10p6 dmg 5.8259E-09 5.96662E-09 5.65703E-09 | 5.6795E-09 | 4.20391E-09
v10p8 dmg 2.26128E-08 2.3159E-08 2.19574E-08 | 2.2045E-08 1.73047E-08
v10p9dmg 2.98107E-08 3.05308E-08 2.89466E-08 | 2.9062E-08 | 4.03281E-08
v10p10 dmg 2.96675E-09 3.03842E-09 2.88076E-09 | 2.8922E-09 | 2.42809E-09
v10plldmg 2.06367E-07 2.11352E-07 2.00385E-07 | 2.0118E-07 | 2.38763E-07
v10 p12 dmg 1.36282E-08 1.39574E-08 1.32332E-08 | 1.3286E-08 | 2.26616E-08
sum 2.98769E-07 3.05986E-07 2.90109E-07 | 2.9126E-07 | 3.51447E-07
avg 3.73461E-08 3.82482E-08 3.62636E-08 | 3.6408E-08 | 4.39309E-08
v10 p29 dmg 1.11286E-10 1.20371E-10 1.14125E-10 | 1.1458E-10 8.9586E-08
v10 p30dmg 9.0261E-09 9.76292E-09 9.25635E-09 | 9.2932E-09 | 9.39677E-09
v10 p31dmg 2.87723E-09 3.1121E-09 2.95063E-09 | 2.9624E-09 | 1.81057E-08
v10 p32dmg 1.30437E-08 1.41085E-08 1.33764E-08 | 1.343E-08 1.41586E-08
v10 p34dmg 2.6786E-08 2.89726E-08 2.74693E-08 | 2.7579E-08 | 2.98832E-08
v10 p35dmg 8.8968E-08 9.62306E-08 9.12375E-08 | 9.1601E-08 | 8.41231E-08
Support v10 p37dmg 1.36689E-09 1.47847E-09 1.40176E-09 | 1.4073E-09 | 8.62917E-10
v10 p38dmg 1.66844E-08 1.80464E-08 1.711E-08 1.7178E-08 9.5383E-09
v10 p39dmg 6.11185E-09 6.61078E-09 6.26776E-09 | 6.2927E-09 | 6.41748E-09
v10 p40dmg 1.61326E-09 1.74496E-09 1.65442E-09 | 1.661E-09 1.52346E-09
sum 1.66589E-07 1.80188E-07 1.70838E-07 | 1.7152E-07 | 2.63596E-07
avg 1.66589E-08 1.80188E-08 1.70838E-08 | 1.7152E-08 | 2.63596E-08
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region Velocity Damage from Damage Damage Damage Actual
&points DAF data from Euro | from NR (h) | from NR(1) damage
code 1
v51 p3 dmg= 4.5988E-09 4.94012E-09 4.60329E-09 | 4.71107E-09 | 4.95275E-09
mid v51 p4dmg= | 1.27721E-08 1.372E-08 1.27846E-08 | 1.30839E-08 | 1.10088E-08
Span
v51p6dmg= 5.76398E-09 6.19178E-09 5.76961E-09 5.9047E-09 7.20826E-09
v51 p8 dmg 2.23725E-08 2.4033E-08 2.23944E-08 | 2.29187E-08 | 2.54381E-08
v51 p9 dmg 2.94939E-08 3.16829E-08 2.95227E-08 3.0214E-08 1.09526E-11
v51p10 dmg 2.93522E-09 3.15307E-09 2.93809E-09 | 3.00688E-09 | 3.04094E-09
v51 plldmg 2.04174E-07 2.19327E-07 2.04373E-07 | 2.09159E-07 | 2.06119E-07
v51 pl12 dmg 1.34834E-08 1.44841E-08 1.34965E-08 | 1.38125E-08 | 1.35202E-08
sum 2.95594E-07 3.17532E-07 2.95882E-07 3.0281E-07 2.71299E-07
avg 3.69492E-08 3.96915E-08 3.69853E-08 | 3.78513E-08 | 3.39124E-08
v51 p29 dmg 1.12422E-10 1.24913E-10 1.16396E-10 | 1.19122E-10 | 4.04191E-08
Support v51 p30 dmg 9.1182E-09 1.01313E-08 7.55144E-09 | 9.66161E-09 | 1.74362E-08
v51 p31dmg 2.90659E-09 3.22954E-09 3.22954E-09 | 3.07981E-09 | 3.03049E-09
v51 p32 dmg 1.31768E-08 1.46409E-08 1.36426E-08 | 1.39621E-08 | 9.49021E-09
v51 p34 dmg 2.70593E-08 3.00659E-08 2.80159E-08 | 2.86719E-08 | 3.08056E-08
v51 p35 dmg 8.98758E-08 9.9862E-08 9.30532E-08 9.5232E-08 7.97207E-08
v51 p37 dmg 1.38084E-09 1.53426E-09 1.42965E-09 | 1.46313E-09 | 8.99259E-10
v51 p38 dmg 1.68546E-08 1.87274E-08 1.74505E-08 | 1.78591E-08 9.5383E-09
v51 p39 dmg 1.69159E-08 1.87955E-08 1.7514E-08 1.7924E-08 6.41748E-09
v51 p40 dmg 1.62973E-09 1.81081E-09 1.68734E-09 | 1.72685E-09 1.8409E-09
sum 1.7903E-07 1.98922E-07 1.83691E-07 1.897E-07 1.99598E-07
avg 1.7903E-08 1.98922E-08 1.83691E-08 1.897E-08 1.99598E-08
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Table (16) continue

region Velocity Damage from | Damage from Damage Damage Actual
&points DAF data Euro code1 | from NR (h) | from NR(l) damage
mid v52 p3 dmg 4.63E-09 4.94012E-09 | 4.60329E-09 | 4.71557E-09 | 2.0314E-08
span
v52 p4dmg 1.286E-08 1.372E-08 1.27846E-08 | 1.30964E-08 1.0044E-08
v52 p6 dmg 5.803E-09 6.19178E-09 | 5.76961E-09 | 5.91033E-09 | 7.2297E-09
v52 p8 dmg 2.253E-08 2.4033E-08 2.23944E-08 | 2.29406E-08 2.7685E-08
v52 p9 dmg 2.97E-08 3.16829E-08 | 2.95227E-08 | 3.02428E-08 | 3.3773E-08
v52 p10 dmg 2.955E-09 3.15307E-09 | 2.93809E-09 | 3.00975E-09 | 3.0381E-09
v52 p11 dmg 2.056E-07 2.19327E-07 | 2.04373E-07 | 2.09358E-07 3.748E-09
v52 p12 dmg 1.358E-08 1.44841E-08 | 1.34965E-08 | 1.38257E-08 | 6.7105E-09
sum 2.976E-07 3.17532E-07 2.95882E-07 | 3.03099E-07 1.1254E-07
avg 3.72E-08 3.96915E-08 | 3.69853E-08 | 3.78874E-08 | 1.4068E-08
v52 p29 dmg 1.124E-10 1.24913E-10 | 1.16396E-10 | 1.19235E-10 | 4.2234E-08
SllppOl't v52 p30 dmg 9.118E-09 1.01313E-08 | 9.44056E-09 | 9.67082E-09 1.203E-08
v52 p31 dmg 2.907E-09 3.22954E-09 | 3.00934E-09 | 3.08274E-09 | 2.7896E-09
v52 p32 dmg 1.318E-08 1.46409E-08 | 1.36426E-08 | 1.39754E-08 | 9.4675E-09
v52 p34 dmg 2.706E-08 3.00659E-08 | 2.80159E-08 | 2.86992E-08 | 2.6023E-08
v52 p35 dmg 8.988E-08 9.9862E-08 9.30532E-08 | 9.53228E-08 | 8.4695E-08
v52 p37 dmg 1.381E-09 1.53426E-09 | 1.42965E-09 | 1.46452E-09 | 4.8398E-10
v52 p38 dmg 1.685E-08 1.87274E-08 1.74505E-08 | 1.78761E-08 5.9833E-09
v52 p39 dmg 1.692E-08 1.87955E-08 1.7514E-08 | 1.79411E-08 | 2.9801E-09
v52 p40 dmg 1.63E-09 1.81081E-09 1.68734E-09 1.7285E-09 2.1464E-09
sum 1.79E-07 1.98922E-07 1.8536E-07 | 1.89881E-07 | 1.8883E-07
avg 1.79E-08 1.98922E-08 1.8536E-08 1.89881E-08 1.8883E-08

105




Table (16) continue

region Velocity Damage from | Damage from Damage Damage Actual
&points DAF data Euro code1 | from NR (h) | from NR(l) damage
v51 p3 dmg= 4.5988E-09 4.94012E-09 | 4.60329E-09 | 4.71107E-09 | 4.95275E-09
mid v51 p4 dmg= 1.27721E-08 1.372E-08 1.27846E-08 | 1.30839E-08 | 1.10088E-08
Span
v51p6dmg= 5.76398E-09 6.19178E-09 | 5.76961E-09 | 5.9047E-09 | 7.20826E-09
v51 p8 dmg 2.23725E-08 2.4033E-08 2.23944E-08 | 2.29187E-08 | 2.54381E-08
v51 p9 dmg 2.94939E-08 3.16829E-08 | 2.95227E-08 | 3.0214E-08 | 1.09526E-11
v51p10 dmg 2.93522E-09 3.15307E-09 | 2.93809E-09 | 3.00688E-09 | 3.04094E-09
v51 plldmg 2.04174E-07 2.19327E-07 | 2.04373E-07 | 2.09159E-07 | 2.06119E-07
v51 p12 dmg 1.34834E-08 1.44841E-08 | 1.34965E-08 | 1.38125E-08 | 1.35202E-08
sum 2.95594E-07 3.17532E-07 | 2.95882E-07 | 3.0281E-07 | 2.71299E-07
avg 3.69492E-08 3.96915E-08 | 3.69853E-08 | 3.78513E-08 | 3.39124E-08
v51 p29 dmg 1.12422E-10 1.24913E-10 | 1.16396E-10 | 1.19122E-10 | 4.04191E-08
Support v51 p30 dmg 9.1182E-09 1.01313E-08 | 7.55144E-09 | 9.66161E-09 | 1.74362E-08
v51 p31dmg 2.90659E-09 3.22954E-09 | 3.22954E-09 ([ 3.07981E-09 | 3.03049E-09
v51 p32 dmg 1.31768E-08 1.46409E-08 | 1.36426E-08 | 1.39621E-08 | 9.49021E-09
v51 p34 dmg 2.70593E-08 3.00659E-08 | 2.80159E-08 [ 2.86719E-08 | 3.08056E-08
v51 p35 dmg 8.98758E-08 9.9862E-08 9.30532E-08 | 9.5232E-08 | 7.97207E-08
v51 p37 dmg 1.38084E-09 1.53426E-09 | 1.42965E-09 | 1.46313E-09 | 8.99259E-10
v51 p38 dmg 1.68546E-08 1.87274E-08 | 1.74505E-08 | 1.78591E-08 | 9.5383E-09
v51 p39 dmg 1.69159E-08 1.87955E-08 1.7514E-08 1.7924E-08 | 6.41748E-09
v51 p40 dmg 1.62973E-09 1.81081E-09 | 1.68734E-09 | 1.72685E-09 | 1.8409E-09
sum 1.7903E-07 1.98922E-07 | 1.83691E-07 1.897E-07 1.99598E-07
avg 1.7903E-08 1.98922E-08 | 1.83691E-08 1.897E-08 1.99598E-08
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Table (16) Fatigue damage comparison for Cross beams

region Velocity Damage Damage Damage from Damage Actual
&points from DAF from Euro NR (h) from NR(I) damage
data code 1
v10 p14 dmg | 4.60581E-09 | 4.58314E-09 | 4.64661E-09 4.6466E-09 8.38828E-09
mid v10 p15dmg | 1.38555E-09 | 1.37874E-09 | 1.39783E-09 1.3978E-09 1.29531E-09
Span
sum 5.99136E-09 | 5.96188E-09 6.04444E-09 6.0444E-09 9.68358E-09
avg 2.99568E-09 | 2.98094E-09 | 3.02222E-09 3.0222E-09 4.84179E-09
v10 p42 dmg 1.2262E-09 | 1.27802E-09 | 1.29572E-09 1.2957E-09 1.94852E-09
SllppOl't v10 p43dmg | 1.76489E-08 | 1.83948E-08 | 1.86496E-08 1.865E-08 8.49431E-09
v10 p44dmg | 5.49404E-09 | 5.72627E-09 | 5.80556E-09 5.8056E-09 6.66281E-09
sum 3.93475E-08 | 4.03038E-08 | 4.08619E-08 4.0862E-08 1.71056E-08
avg 9.83688E-09 | 1.0076E-08 1.02155E-08 5.8374E-09 5.70188E-09
region Velocity Damage Damage Damage from Damage Actual
&points from DAF from Euro NR (h) from NR(I) damage
data code 1
v51 pl14 dmg= | 4.70554E-09 | 4.75994E-09 5.109E-09 5.109E-09 4.98236E-09
mid v51 p15 dmg= | 1.41556E-09 | 1.43192E-09 | 1.53693E-09 | 1.53693E-09 | 1.21572E-09
span
sum 6.1211E-09 | 6.19186E-09 | 6.64593E-09 | 6.64593E-09 | 6.19808E-09
avg 3.06055E-09 | 3.09593E-09 | 3.32297E-09 | 3.32297E-09 | 3.09904E-09
v51 p42 dmg | 1.30836E-09 | 1.32732E-09 | 1.42466E-09 | 1.42466E-09 2.0027E-09
SllppOI't v51 p43dmg | 1.88315E-08 | 1.91044E-08 | 2.05054E-08 | 2.05054E-08 | 8.09817E-09
v51 p44 dmg 5.8622E-09 | 5.94716E-09 | 6.38329E-09 | 6.38329E-09 | 5.97189E-09
sum 2.60021E-08 | 2.63789E-08 2.83134E-08 2.83134E-08 1.60728E-08
avg 8.66736E-09 | 8.79297E-09 | 9.43779E-09 | 9.43779E-09 | 5.35759E-09
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Table (16) continue

region Velocity Damage from Damage Damage from | Damage from Actual
&points DAF data from Euro NR (h) NR() damage
code 1
v52 p14 dmg 4.551E-09 4.76448E-09 5.11807E-09 5.11807E-09 | 5.6649E-09
mid v15 p15dmg 1.369E-09 1.43329E-09 1.53966E-09 1.53966E-09 | 1.1047E-09
Span
sum 5.921E-09 6.19776E-09 6.65773E-09 6.65773E-09 6.7696E-09
avg 2.96E-09 3.09888E-09 3.32886E-09 3.32886E-09 | 3.3848E-09
v52 p42 dmg 1.336E-09 1.32859E-09 1.42719E-09 1.42719E-09 | 3.6438E-09
Support v52 p43 dmg 1.923E-08 1.91226E-08 2.05418E-08 2.05418E-08 8.2272E-09
v52p44 dmg 5.987E-09 5.95282E-09 6.39461E-09 6.39461E-09 | 7.8135E-09
sum 2.655E-08 2.6404E-08 2.83636E-08 2.83636E-08 | 1.9684E-08
avg 8.852E-09 8.80134E-09 9.45454E-09 9.45454E-09 | 6.5615E-09
region Velocity Damage from Damage Damage from Damage Actual
&points DAF data from Euro NR (h) from NR(l) damage
code 1
v82 pld dmg | 4.62394E-09 | 4.91407E-09 5.43993E-09 5.43993E-09 | 9.48378E-
09
mid v82 p15dmg 1.39101E-09 | 1.47829E-09 1.63648E-09 1.63648E-09 | 1.39557E-
09
Sspan
sum 6.01495E-09 | 6.39236E-09 7.07642E-09 7.07642E-09 | 1.08794E-
08
avg 3.00748E-09 3.19618E-09 3.53821E-09 3.53821E-09 | 5.43968E-
09
v82 p42dmg | 1.28185E-09 1.3703E-09 1.51694E-09 1.51694E-09 | 2.31075E-
09
SllppOI't v82 p43dmg 1.84494E-08 1.9723E-08 2.18336E-08 2.18336E-08 | 2.93892E-
09
v82 p44dmg 5.74326E-09 | 6.13974E-09 6.79675E-09 6.79675E-09 | 7.39493E-
09
sum 2.54745E-08 2.72331E-08 3.01473E-08 3.01473E-08 | 1.26446E-
08
avg 8.49151E-09 9.0777E-09 1.00491E-08 1.00491E-08 | 4.21486E-
09
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region Velocity Damage from Damage Damage from Damage Actual
&points DAF data from Euro NR (h) from NR(]) damage
code 1
v10 p17 dmg [ 9.55036E-09 | 9.29199E-09 9.27354E-09 9.292E-09 9.29197E-
09
mid v10 p18 dmg 2.047E-08 1.99162E-08 1.98766E-08 1.9916E-08 | 2.06515E-
08
Span
v10p19 dmg | 4.38132E-08 | 4.26279E-08 4.25432E-08 4.2628E-08 | 9.00174E-
09
v10 p20dmg | 1.50801E-08 | 1.46722E-08 1.4643E-08 1.4672E-08 | 1.2635E-08
sum 8.89136E-08 | 8.65082E-08 8.63364E-08 8.6508E-08 | 5.15802E-
08
avg 2.22284E-08 | 2.16271E-08 2.15841E-08 2.1627E-08 | 1.2895E-08
v10 p45dmg | 1.79386E-09 | 1.76064E-09 1.75715E-09 1.7606E-09 1.89295E-
09
support v10 p47dmg 5.41608E-09 | 5.31578E-09 5.30523E-09 5.3158E-09 | 4.98482E-
09
v10 p48dmg 5.49473E-09 | 5.39297E-09 5.38226E-09 5.393E-09 7.06492E-
09
sum 1.27047E-08 | 1.24694E-08 1.24446E-08 1.2469E-08 1.39427E-
08
avg 4.23489E-09 | 4.15647E-09 4.14821E-09 4.1565E-09 | 4.64756E-
09
Table (16) Fatigue damage comparison for Main Girders
region Velocity Damage from | Damage from Damage Damage Actual
&points DAF data Euro code 1 from NR from NR(]) damage
(h)
v51 p17 dmg= | 9.13513E-09 9.58727E-09 | 9.38426E-09 | 9.5965E-09 | 9.77258E-09
mid v51 p18 dmg= 1.958E-08 2.05491E-08 | 2.0114E-08 | 2.05689E-08 | 1.74362E-08
Span
v51p19dmg= 4.19082E-08 4.39825E-08 | 4.30512E-08 | 4.40248E-08 | 1.14312E-08
v51 p20 dmg 1.44245E-08 1.51384E-08 | 1.48179E-08 | 1.5153E-08 | 2.68261E-12
sum 8.50478E-08 8.92572E-08 | 8.73673E-08 | 8.93431E-08 | 3.86427E-08
avg 2.1262E-08 2.23143E-08 | 2.18418E-08 | 2.23358E-08 | 9.66068E-09
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v51 p45 dmg 1.8061E-09 1.81659E-09 | 1.77813E-09 | 1.81834E-09 | 1.99676E-09
SllppOl't v51 p47 dmg 1.08258E-08 5.48471E-09 | 5.35339E-09 | 5.48998E-09 | 4.98431E-09
v51 p48 dmg 5.53221E-09 5.56435E-09 [ 5.56435E-09 [ 5.5697E-09 | 1.89295E-09
sum 1.81641E-08 1.28656E-08 | 1.26959E-08 | 1.2878E-08 | 8.87402E-09
avg 6.05471E-09 4.28855E-09 | 4.23196E-09 | 4.29268E-09 | 2.95801E-09
region Velocity Damage from | Damage from Damage Damage Actual
&points DAF data Euro code1 | from NR (h) | from NR(]) damage
v52 p17 dmg 8.951E-09 9.5965E-09 9.45808E-09 | 9.60572E- 1.0249E-08
09
mid v52 p18dmg 1.918E-08 2.05689E-08 | 2.02722E-08 | 2.05886E- 1.4542E-08
08
Span
v52 p19 dmg 4.106E-08 4.40248E-08 | 4.33899E-08 | 4.40672E- 7.03E-09
08
v52 p20 dmg 1.413E-08 1.5153E-08 1.49344E-08 | 1.51675E- 9.8132E-09
08
sum 8.333E-08 8.93431E-08 | 8.80545E-08 | 8.94291E- 4.1634E-08
08
avg 2.083E-08 2.23358E-08 | 2.20136E-08 | 2.23573E- 1.0409E-08
08
v52 p45 dmg 1.825E-09 1.81834E-09 | 1.79212E-09 | 1.82009E- 1.9968E-09
09
SllppOl't v52 p47 dmg 5.511E-09 5.48998E-09 5.4108E-09 5.49526E- 4.262E-09
09
v52 p48 dmg 5.591E-09 5.5697E-09 5.48937E-09 | 5.57506E- 1.1307E-08
09
1.293E-08 1.2878E-08 1.26923E-08 | 1.28904E- 1.7565E-08
08
avg 4.309E-09 4.29268E-09 | 4.23076E-09 | 4.2968E-09 | 5.8551E-09
v82 p17 dmg | 9.45808E-09 | 9.82718E-09 | 9.5965E-09 | 9.84563E- | 1.13029E-08
09
mid span v82 p18 dmg 2.02722E-08 2.10633E-08 | 2.05689E-08 | 2.11029E- 2.23654E-08
08
v82 p19 dmg 4.33899E-08 4.50831E-08 | 4.40248E-08 | 4.51678E- 9.6888E-09
08
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v82 p20 dmg 1.49344E-08 1.55174E-08 1.5153E-08 1.55464E- 1.56103E-08
08

sum 8.80545E-08 9.1491E-08 8.93431E-08 | 9.16626E- 5.89675E-08
08

avg 2.20136E-08 2.28727E-08 | 2.23358E-08 | 2.29157E- 1.47419E-08
08

v82 p45 dmg 1.8061E-09 1.86205E-09 1.81834E-09 | 1.86555E- 2.19884E-09
09

support v82 p47dmg 5.45303E-09 5.62196E-09 | 5.48998E-09 5.6302951E- 5.01605E-09

v82 p48dmg 5.53221E-09 5.70359E-09 5.5697E-09 | 5.7143E-09 | 5.85321E-09

sum 1.27914E-08 1.31876E-08 1.2878E-08 1.32124E- 1.30681E-08
08

avg 4.26378E-09 4.39587E-09 | 4.29268E-09 | 4.40412E- 4.35603E-09
09
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Chapter 6

Conclusion:

This assignment presents a study of the structural behaviour of Soderstrom bridge in
Stockholm which locates in central Sweden. Three different methods are used to calculate the
dynamic amplification factors (D.A.F) for the bridge elements (Stringers, main girders, and
cross beams). The field measurements are carried out by using RC6 Swedish locomotive train
with different velocities (1 Km/hr, 51km/hr, 52 km/hr and 82 km/hr). The monitoring and

recording data are carried out for a period of 43 days.

The obtained data is used as a source to calculate the D.A.F, plotting stress history curves to,
finally, get the more realistic damage. Also, two codes of practice (EURO CODEI, NR
CODE) are used for the same purposes. The overall study can be concluded in the

followings:

1- Using field measurements for calculating of both D.A.F and fatigue damage may be
closer to the actual damage of the bridge because it depends basically on the stress

ranges of the structural elements as a response to a particular velocity.

2- Using the other two options are dependent on the length of the elements and velocity

of the train.

3- Fatigue damages obtained from D.A.F concept sometimes might be overestimated, for

example, the average fatigue damage at mid span for 82km/hr in table 17 from actual

stress response is 1.47 x 10°. However, obtained fatigue damage from D.A.F of field
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measurements is 2.2 x 10°, from EUROCODE 1 is 2.28 x10° , from N. R code (high

frequency) and (low frequency) are 2.23 x 10% and 2.29 x 10° respectively.

4- According to the aforementioned point, it can be observed that using D.A.F for
calculating fatigue damage might be a non-economic method; however, it is the most
conservative way for fatigue damage estimation. Furthermore, using D.A.F from field

measurements is the closest to the actual damage compared the other two methods.

5- In most cases, for this bridge the damages at mid span is greater than damage at

supports.

It might be better to calculate the actual fatigue damage rather than the other alternative
methods to estimate the remaining fatigue life of the bridges. However, the data used in this
study is from RC6 locomotive train for a period of 43 days - not from a real traffic - the

obtained D.A.F for the real traffic may be different.

It is suggested that further study can be demonstrated by monitoring and recording the
response of other bridges under the real traffics for a period of one year to get the most

realistic fatigue damages in order to provide the most economic assessment practice.
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