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Abstract 

      Heading determination is said to be one of the important requirements in 

navigation systems and can be performed by different methods. Advances in 

Global Positioning System (GPS) technology, which is easy and low-cost, 

make GPS more preferable and alternative for the navigation systems. The 

problem with navigation systems that utilizes GPS only for heading 

calculation is that the GPS signals are not available in indoors and in 

underwater operational environment. Another way to find heading is by 

using a digital magnetic compass (DMC). These devices are compact and 

low-cost instruments that are capable of achieving an accuracy of 

milidgrees. However, heading accuracy of such devices is highly dependent 

on the working environment and can be easily degraded by a ferrous 

material or by electromagnetic interference. 

 

       This thesis examines the determination of the heading using low-cost 

MEMS inertial measurement sensors Gyroscopes and accelerometers. These 

devices can overcome the problems like degradation by ferrous material and 

electromagnetic field and can be used in indoor navigation since they are 

working on inertial principle. This method is based on the detection of earth 

rotation which is very small as compared to sensor range, so detecting such a 

weak signal requires precise error analysis and characterization. Tests and 

results of the inertial sensors are implemented with different approaches. 

The results show that the MEMS sensors that have been used in this work 

can be used for heading determination with a certain value of error. 
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1 Introduction 

 

1.1  Thesis objective 

 

    The fundamental purpose of this thesis is to find north direction using 

low-cost MEMS gyroscope by different proposed methods. Error 

characterization associated with a MEMS gyroscope, most importantly bias 

instability, has also been studied. Bias instability decides whether the 

selected sensor can be used to accomplish required task or not.  
 

   Inertial sensor calibration is performed for both gyroscopes and 

accelerometers in order to find their scale factor, misalignment, static bias. 

The sensor calibration is also useful to find the rotation matrices to convert 

the sensor values from the sensors coordinate system to a unified coordinate 

system, in our case a triad frame.  
 

1.2  Literature survey 

    Heading calculation using low-cost IMU by the proposed methods   

requires error identification and compensation. A detailed error 

identification and analysis using Allan variance has been developed for this 

purpose [Haiying Hou], it defines and classifies the common  errors found 

in gyroscopes and rate gyros: bias, scale factor, misalignment, and noise. A 

procedure has also been developed to obtain the statistics of each of these 

error sources.   Development of a  MEMS gyroscope for north finding 

applications is proposed using  tuning fork type MEMS gyro [Burdess].The 

Angle Random Walk (ARW) and root Allan variance has been measured 

and found that it satisfies the requirement for gyro compassing. Then the 

long-term  bias drift has been compensated for using Carouseling 

technique, for which the Earth rotation could be found successfully. 

 

A system for finding true north with rotating linear accelerometers utilizing 

the Coriolis Effect to detect the horizontal component of the earth's spin rate 

requires expensive and precise accelerometer [Guofu]. Beside mathematical 

modeling, a signal processing  algorithm to deal with the accelerometer 

output is presented.  
 

Direct measurement of the Earth's rotation using Low-cost MEMS rate    

gyroscope is difficult to achieve due to considerable parameter variations of 

the current state-of-art sensors of this type  [Rumen]. The external factors 

that affect the sensor measurement are modeled and compensated 
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mechanically by changing the  sensor's orientation. Here the drift in the 

gyroscope is compensated for  and the gravity effect on the gyro is also 

eliminated resulting in more accurate estimate of the Earth's rotation. 

 

1.3  Achievements of  this thesis 

      The following are the achievements of the thesis. 

 MEMS inertial sensors error characterization  

 Gyro and accelerometer calibrations 

 Heading calculation by Maytagging method 

 Gyro-bias compensation using distributed accelerometer triad 

 

1.4   Organization of thesis 

Chapter 0 presents the thesis objectives, achievements, literature survey, and 

Organization of thesis. 

 

Chapter 2 reviews theory and background of MEMS gyroscope and 

accelerometer. Error characterization is also presented using Allan variance 

method. Finally the sensor calibration is described for both gyro and 

accelerometer.  

 

Chapter 1 provides the hardware specifications for both of development 

board and the sensors that are used for system realization. The circuit that 

has been used for data collection from the  sensors into the development 

board has been presented and the software that works behind the hardware is 

also illustrated. 

 

Chapter 1 includes the analysis and the experimental results. 

 

Chapter 2 presents the thesis conclusion and provides the 

 recommendation of future research.  
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2 Inertial sensors, error characterization, and calibration 

 

2.0 MEMS inertial sensors 

    Micro-Electromechanical Systems, or MEMS, can be used to produce 

complex structures, devices and systems. MEMS refer to devices that have 

characteristic length of less than 0 mm but more than 0 micron, that combine 

electrical and mechanical components and which are fabricated using 

integrated circuit batch-processing technologies. 
 

     Most sensors are designed to convert a physical phenomenon into a 

measurable signal. For inertial sensors, this physical phenomenon is an 

inertial force. Often this force is converted into a linearly scaled voltage 

output with a specific sensitivity. 
  

     In mechanical sensors, the active structural elements convert a 

mechanical external input signal (force, pressure, acceleration, etc) into an 

electrical signal output (voltage, current, or frequency) applying an external 

force to the active part of the sensor. Active parts usually are elements such 

as suspended beams or membranes [02]. 
 

    In electromechanical conversion, the mechanical quantity is transformed 

into an electrical quantity such as capacitance, resistance or charge. Often, 

the electrical signal needs further electrical conversion into an output 

voltage, frequency or current. To optimize all the transfer functions, detailed 

electrical and mechanical modeling is required. 
 

     MEMS sensors can suffer in overall system sensitivity. The tradeoff 

between system size, cost and performance is often directly coupled. It 

should be taken into account that the properties of thin-film materials are 

often significantly different from their bulk or macro-scale form. 

Assumption of homogeneity, commonly used with accuracy for bulk 

materials, becomes unreliable when used to model devices that have 

dimensions on the same scale as individual grains and other microscopic 

fluctuations, affecting the properties of the material. Thus, local changes in 

grain size and other characteristics could significantly alter the performance 

of MEMS produced devices. Many different inertial microsensors have been 

made (e.g. single- and multi-axis accelerometers and gyroscopes) using 

either piezoresistors or capacitive position detection [02]. 
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2.0.0 Accelerometers 

     A linear accelerometer is an inertial sensor that measures the component 

of translational acceleration along its input axis. An output signal is 

produced from the motion of a proof mass relative to the case, or from the 

force or torque required to restore the proof mass to a null position relative 

to the case [01]. 
  

     MEMS accelerometers can be classified into different categories 

dependent upon following three parameters: the position detection of the 

seismic mass (piezoresistive signal pick-off sensors, capacitive signal pick-

off sensors, piezoelectric sensing element sensors and resonant element 

sensors), the operation mode (open loop operation and closed loop 

operation), and the fabrication process of the sensing elements[02]. 
 

     An open-loop silicon micromechanical accelerometer can sense proof-

mass displacement piezoelectrically, piezoresistively, or electrostatically. 

Piezoelectric sensing of the strain in the proof-mass support restricts 

measurement to AC (above about 2 Hz) rather than DC inputs because of 

leakage of the piezoelectric generated charge [01], [01]. 
 

     Generally, the proof mass is suspended by compliant beams anchored to a 

fixed frame. The proof mass has a mass of M, the suspension beams have an 

effective spring constant of K, and there is a damping factor D affecting the 

dynamic movement of the mass, see Fig. 2.0. External acceleration displaces 

the support frame relative to the proof mass, which in turn changes the 

internal stress in the suspension spring. Both the relative displacement and 

the suspension-beam stress can be used as a measure of the external 

acceleration [02]. 

 

 

Figure 2.0: General accelerometer structure and its mechanical lumped model [after 07] 
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2.0.2 Gyroscopes 

    A gyroscope is an inertial sensor that measures angular rotation about its 

input axis with respect to inertial space. The sensing of such motion could 

utilize the angular momentum of a spinning rotor, the Coriolis effect on a 

vibrating mass, or the Sagnac effect
0
 on counter-propagating light beams in 

a ring laser or an optical fiber-coil[01]. 
 

    Coriolis acceleration, named after Gaspard-Gustave Coriolis (0772-

0111), is a fictitious acceleration (and not a real force, since it is based on 

motion relative to a non-inertial reference frame, which is rotating) that 

arises in a rotation reference frame and is proportional to the rate of rotation. 

To understand the Coriolis effect, imagine a particle traveling in space with 

a velocity vector v. An observer sitting on the x-axis of the xyz coordinate 

system, shown in Fig. 2.2, is watching this particle. If the coordinate system 

along with the observer starts rotating around the z-axis with an angular 

velocity Ω, the observer thinks that the particle is changing its trajectory 

towards the x-axis with an acceleration equal to 2V × Ω. Although no real 

force has been exerted on the particle, to an observer attached to the rotating 

reference frame an apparent force has resulted that is directly proportional to 

the rate of rotation. This effect is the basic operating principle underlying all 

vibratory structure gyroscopes [02]. 

 

 

 
Figure 2.2: The Coriolis effect [after 07] 

      

 

                                                      

0
 The Sagnac effect (also called Sagnac Interference) is a phenomenon encountered in   

interferometry that is elicited by rotation. 
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2.2 Error characterization   

      There are various sources of errors that affect the performance of inertial 

sensors. Apart of noise in the system, the most commonly present errors are 

biases, scale factors, non-linearities and axes misalignment. These errors are 

briefly discussed in the following subsections. 
 

2.2.0 Bias  

    The bias of MEMS sensors is the average of output signal that has no 

relation with the input quantity sensed by the sensors. That is even though 

there is no force acting onto the sensors; the sensors produce a non-zero 

output [00]. 

 

  

 
 

Figure 2.1: The relationship between the output voltage of the accelerometer    

(gyroscope)and the measured force (angular rate) is modeled as a linear function 

describing the scaling and bias of the sensors [after 00]. 

 

       The relationship between the output voltage and the physical quantity 

acting along the sensor sensitive axes is given by the manufactures data 

sheet, but the true scaling may vary from sensor to sensor. Bias can be split 

into a static part called bias offset (refers to the offset in the measurement), a 

random part called bias drift and a temperature varying part. Both the bias 

offset and the temperature varying part are deterministic in nature and 
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therefore can be determined by calibration. The bias drift, on the other hand, 

are random in nature and should be modeled as a stochastic process. 

  

2.2.2 Scale factor 
 

  Scale factor is the ratio of change between the measured output and the 

change in sense input. It is generally evaluated as a slope of the straight line 

that can be fit by least square method to input-output data and is typically 

expressed as a percentage or ppm (parts per million).like the case of bias, 

scale factor can be divided into three parts, a static part, a random drift part 

and a temperature varying part [00]. 

 

2.2.1 Misalignment 

 

    Axes misalignment is the error from the imperfection of mounting the 

sensors. It often results in a non-orthogonality of the axes. As a result, each 

axis is affected by measurements of the other two axes in the body frame. 

Since axes misalignments are a manufacturing imperfection can therefore 

easily be detect and compensated by calibration [00]. 
 

2.2.1 Non-linearity 

 

     Non-linearity is the deviation of the sensor output from the input-output 

derived from a least square method over the operating range. The deviation 

is expressed as a percentage of the full-scale output. 

 

2.2.2    Allan variance and gyroscope error characterization 

     Allan variance was developed by David W. Allan in 0700 ("Statistic of 

Atomic Frequency Standards"). The Allan variance method of data analysis 

is a time domain analysis technique originally developed to study the 

frequency stability of oscillators. In general, the method can be applied to 

analyze the noise characteristics of any precision measurement instrument. 

The attractiveness of this method is that the Allan variance, when plotted in 

logarithmic scales, can discriminate different contributing error sources by 

simply examining the varying slopes on the Allan plot. Because of the 

analogies, the Allan variance method analysis has been adapted to random 

drift characterization of inertial sensors (IEEE Sdt.722-0777).  
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Methodology 
 

 Assume that there are N consecutive data points, each having a sample time     

of τ1, then 

 Form groups of n consecutive data points τ1, 2 τ1,.. n τ1, with  

     0 ≤ n < N/2, see Fig.2.1 

 Each group is called cluster. Associated with each cluster is a time τ, 

          which is equal to n τ1. 

 Obtain averages of the sum of the data points contained in each cluster 

 over the length of that cluster 

 
Figure 2.1: Scheme of data structure used in Allan variance algorithm [after 00] 

 

Consequently, the Allan variance
2
 is defined as [7]: 

                  
 

    1

2
2 1

2 1 i ii
AVAR y y

m
  


 


                           (2.0) 

 Where AVAR(τ) is the Allan Variance as a function of the averaging  time, 

τ; yi is the average value of the measurement in bin i; and m is the total 

number of bins.  

 

    A log-log plot of the square root of the Allan variance, AVAR(τ), versus τ  

provides a means of identifying and quantifying various noise terms that 

exist in the inertial sensor data. 

 

Noise source analysis 

 

   In general, any number of random noise components may be present in the 

data depending on the type of device and the environment in which the data 

is obtained. If the noise sources are statically independent, then the 

computed Allan variance is sum of the squares of each error type [00]. 

   The following subsections will show the most affective type of noise 

which affects the output data of the sensors. 

                                                      

2
 Frequently the term Allan variance is also used to refer to its square root, σ(τ) 
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Bias instability 
 

  Bias Instability is also known as " f1 noise" or "flicker noise". This is a low 

frequency bias fluctuation in the measured rate data. The origin of this noise 

is the electronics, or other components susceptible to random flickering. 

Because of its low-frequency nature, it shows as the bias fluctuations in the 

data.  

Bias Instability is a fundamental measure of the 'goodness' of a gyro.  It is 

defined as the minimum point on the Allan Variance curve as shown in 

Fig.2.2, usually measured in °/hr. It represents the best bias stability that 

could be achieved for a given gyro, assuming that bias averaging takes place 

at the interval defined at the Allan Variance minimum. 

 

Combined effects of all noise sources 

  In general, any number of random processes can be present in the data. 

Thus, a typical Allan variance plot looks like the one shown in the Fig. 2.2. 

Experience shows that in most cases, different terms appear in different 

regions of  . This allows easy identification of various random processes 

that exist in the data. If it can be assumed that the existing random processes 

are all statistically independent then it can be shown that the Allan variance 

at any given   is the sum of Allan variances due to the individual random 

processes at the same   [00]. 

 

Figure 2.2: )(  Sample plot of square root of Allan variance analysis results (after 

IEEE Std.722-0777). 
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    2.1   Calibration of inertial sensors 
 

    Calibration is the process of comparing instrument outputs with known 

reference information and determining coefficients that force the output to 

agree with the reference information over a range of output values. 

Calibration is necessary, because the sensor sensitivity axes usually do not 

coincide exactly with the body frame axes. This is due to manufacturing 

imperfections when soldering the sensors onto the board as well as 

imperfections of the sensors themselves. This may also include non-

orthogonality of the sensitivity axes in addition to simple misalignment, 

especially if a cluster of one-axis sensors is used. As actual scale and bias 

values usually differ from the nominal values, they have to be determined, 

too. The calibration process requires a mechanical platform to precisely 

manipulate the IMU. A minimum of one actuated degree of freedom is 

needed to calibrate the gyroscopes. However such a system requires 

extensive and tedious user manipulation, as the IMU has to be repositioned 

several times. Thus, it is desirable to have three degrees of freedom platform 

able to rotate the IMU around arbitrary axes in space, minimizing the 

necessary user interactions.  

Another purpose of calibration in this work was to find transformation 

matrix (as well as misalignment and scale factors) to transform data from the 

sensor coordinates to a unified coordinate called triad coordinate, since there 

is more than one sensor and the orientation of each is different from the 

others. The calibrations stated in the next sections is performed for the last 

task of this thesis (section 1.1), because we have also performed the 

calibration for (section 1.0) but it we are not going to describe it  since it is 

similar to the one used in section (1.1). 
 

   2.1.0   Accelerometer calibrations        

    Accelerometers suffer from several sources of errors, namely 

misalignment, scale factor, bias, and noise. We can calibrate for three types 

of errors: scale factor, misalignment, and the three bias parameters in a 

single calibration procedure of each sensor. A 7-element sensitivity matrix 

can be found, whose diagonal elements contain misalignment parameters. 

Likewise, we find the three bias elements [0].  

In matrix form, the accelerometer triad output is related to the specific force 

as [0]: 



 00 

      

m m mZ a b vxx xy xzx x ax ax

Z m m m a b vy yx yy yz y ay ay

Z m m m a b vz zx zy zz z az az

  

        
        
        
                

        

There are many methods to solve for m and b elements. Following a similar 

approach to the one given in, we rearrange equation (2.2) into the following 

form [0]: 

                                          z O va     

,         1

mxx

m mxy

mxz



 
 
 
  

   ,  2

myx

m myy

myz



 
 
 
 
 

  , 3

mzx

m mzy

mzz



 
 
 
  

 

                       

T
v v v va ax ay az

T
b b b ba ax ay az





  

  

 

The observation matrix for every measurement is given by [0] 

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

a a ax y z

O a a ax y z

a a ax y z



 
 
 
 
 

 

We stack N observation matrices from N observations to form the total  

 

Measurement vector and the total observation matrix shown next [0]: 

 

11 1

.. .

.. .

vz O a

NN N
O vz a

 

    
    
    
    
    

    

  ,  
t t t

z O v a   

To have an observable system, we need a minimum of four measurements 

with proper values of the specific force values. To extract the m and b 

elements, we use least square estimation [0] 

(2.2) 

(2.1) 

1

2

3

m

m

m

ba

 

 
 
 
 
   (2.1) 

(2.2) 

(2.0) 
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  
1

ˆ ttT t tT
O O O z


  

The implementation of these equations in MATLAB is shown in appendix II  

 

The four measurements have been taken with a different frame orientation 

with data logging for approximately 12 seconds for each position. First the 

Z-axis has been pointed upward (Fig. 2.0) and then Y-axis pointed upward 

(Fig. 2.7) and then X-axis (Fig. 2.1) and finally Z-axis pointed downward 

(Fig. 2.7). 

 

 

   

 

 

So called (spirit level or bubble level) shown in the Fig.2.0 is used to obtain 

a horizontal alignment of the frame (zero degree with the local horizontal 

plane) to reduce errors (false reading) in the accelerometers while we are 

performing calibration. 

(2.7) 

Z-axis 

X-axis 

Y-axis 

Figure 2.0: Z-axis upward position 

Sensor B 
Sensor A 

Sensor D 

Sensor C 
Spirit level 
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Figure 2.7: Y-axis upward position 

Y-axis 

X-axis 
Z-axis 

Figure 2.1: X-axis upward position 

X-axis 

Z-axis 
Y-axis 
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   The sensors have been labeled so that it will be easier to perform 

calibration and to recognize output collected data. As shown in figures 

above, the accelerometer sensitive axis need to be pointed  either upward or 

downward so that we read the earth's gravity vector plus some bias on one 

axis, and on the others only bias. It is essential that this experiment is 

performed on a flat surface so that the gravity vector will not affect the other 

two axes and they should be held parallel to the local horizontal plane. 

 

As shown in figures bellow, each plot represents accelerometer's output and 

they are different from each other, since the orientation of the sensors are 

different and that gives different values for each sensor's axis. For that 

purpose we need to calibrate the sensors and represent them in a unified 

coordinate for all of them, which in this case is the triad's axes. 

Figure 2.7: Z-axis downward position 

Z-axis 

X-axis Y-axis 
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Figure 2.01: Sensor triad A's output raw data 

Figure 2.00: Sensor triad B's output raw 

data 
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Figure 2.02: Sensor triad C's output raw 

data 

Figure 2.01: Sensor triad D's output 

raw data 
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Four measurements were collected and processed in MATLAB program as 

in [0] and are used to find the misalignment, scale factor, and bias. By this 

program one can also find the direction cosine matrix to transform from 

sensor's coordinate frame to the triad's frame. 

Shown in table 2.0 is the summary of the accelerometers calibration, after 

this calibration, any data coming out from the accelerometers will be in m/s
2
. 

 

Sensor triad A: 

Misalignment and scale factor      Bias 

 

-01.11      -1.97.5      -11.017     120.02 

1.22.4      -02.717        21.17      202.10 

-20.222      -2.2212       196..4    02.110 

 

Sensor triad B: 

Misalignment and scale factor      Bias 

1.99..      -27.710      -2.7000    720.10 

22.007       1..9.7       07.001     210.01 

1.7021       1.0110       1.72.3    -00.77 

 

Sensor triad C: 

Misalignment and scale factor      Bias 

-7.1020      -1.76.1      -11.717    212.72 

-1.2227      -01.177       1.97.2    101.10 

-1912.3       1.1110      -7.2717   -170.12 

 

Sensor triad D: 

Misalignment and scale factor      Bias 

-0.0111     -1.26.7     -0.2002   270.01 

1.99.1      -1.1201      1.0717   111.11 

-2.112       01.112       1913.4   -101.1 

 

Table 2.0: Accelerometer calibration parameters 

 

Colored in green and bolded, are the scale factor of the sensors for each axis, 

and the fourth column is the bias colored in red and the rest are the 

misalignments. From the above data, it is obvious that the sensor triads have 

different alignment.  
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  2.1.2   Gyroscope calibrations      

   Gyro calibration procedure is similar to the accelerometer calibration, but 

instead of changing the orientation of the sensor, the gyro is mounted on a 

precise rotating turntable which is controlled by a computer, and rotates at 

the precisely known angular rate. 

 

The equations used for gyro calibration is similar to the one used for 

accelerometers, but instead of an  in equation  2.2 as the earth's gravity to the 

sensors, we rotate the turn table with a specified turn rate ωn. The detail of 

the program in MATLAB is shown in Appendix II. 

  

Shown bellow is the setup used to perform the calibration of the Gyroscope. 

As we can see, the triad is mounted on a leveled turntable and rotated at 01 

RPM clockwise and counterclockwise, so we will get six measurements 

since we have 1 axes with 1 rotations.  

 

 

 

 
Figure 2.01: rotation around X-axis 

CW 
CCW 
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Figure 2.02: rotation around Y-axis 

Figure 2.00: rotation around Z-axis 

CW 
CCW 

CW 
CCW 
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The output of the gyroscope after performing the above rotations is shown in 

Fig. 2.07 

 

 

 

Shown in table 2.2 is the summary of the gyro calibration 

Misalignment and scale factor       Bias 

71.112         9569      -7.2020    000.122 

-9519.5          2.1      -21.007      70.022 

001.77       72.017      -9493.9    -001.001 
 

Table 2.2: Gyro calibration Parameters 

 Colored in green and bolded, are the scale factor of the gyroscope for each 

axis, and the fourth column is the bias colored in red and the rest are the 

misalignments. 
 

After doing this calibration, any value read from gyroscope will be in rad/s. 

 

Figure 2.07: Gyro triad A's output 

raw data 

x 

y 

z 
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3      Experimental setup 

  1.0 Hardware 

    The hardware components used in this work are a Laptop with Linux 

Ubuntu 00.11 operating system for sensor data analysis and BeagleBoard  

for data logging from IMUs , MPU0121-ev 7 DOF inertial measurement 

units from Invensense. Two logic level converters are used since the logic 

voltage from BeagleBoard side is 0.1V and from the IMU side is 1.1V. 
 

 The following sections provide the setup details and the characteristics of 

BeagleBoard and summarize the IMU features and the connection diagram 

between them. 
 

1.0.0      BeagleBoard as single-board computer  

    The BeagleBoard (Fig.1.0) is a powerful single-board computer 

developed by Texas Instruments, featuring their OMAP1211 system on a 

chip. This OMAP1211 builds in an ARM Cortex-A1 at 721 MHz CPU 

clock. The board is supported by a large community and is designed with 

open source development in mind. It measures about 1x1" and has all the 

functionality of a basic computer. It has many expansion options, the 

BeagleBoard can be used as the backbone for a large variety of projects [2].  
 

The OMAP1211 includes an HD-video capable TMS121C01x+ DSP for 

accelerated video and audio decoding, and an OpenGL ES 2.1 capable 

2D/1D GPU. Video outputs can be provided by the on-board S-video or 

DVI-D (HDMI connector) outputs. Several communication issues are solved 

by the OMAP through I2C, SPI, UART communication which are available 

in the expansion header of the board allowing a high flexibility to 

communicate with a large variety of sensors [2].  
 

The board also includes an MMC+/SD/SDIO interface, USB 2.1, 1.2mm 

stereo audio in/out connectors, RS212 and JTAG ports. It can consume up to 

2W of power, which can be provided via USB or an external 2V source, via 

the on-board barrel jack. Because of the very low power consumption, the 

board requires no additional cooling [2]. 
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BeagleBoard requires several connections and configurations. The following 

connections are needed to accomplish the first board's start up. 
 

Power Supply 
 

Powering up the BeagleBoard can be achieved in two ways: the first one is 

by connecting an USB OTG (on-the-go) cable which will deliver the power 

to switch on the board. The second way is to connect an external power 

supply adapter of 2V to the jack barrel connector which is available for such 

purpose. The last option is recommended because at the moment to run for 

the first time, the system requires a bit of extra power and while supplying 

the board through USB could lead in a problem due to USB OTG cannot 

deliver enough current for this operation resulting in error or hanging issues 

when trying to boot up the system [1]. 
 

Serial Connection 
 

Next, it will be shown how to communicate with the BeagleBoard which is 

accomplished by Ethernet over USB, but the first communication will be 

realized serially since the Ethernet needs some settings after the board is 

initialized for the first time. 
 

To connect the board using RS212, a serial cable is needed to plug it into the 

01 pin-header of the board. This cable is known as DB7-M to IDC-01 

Figure 1.0: Beagle Board's hardware [after wikipedia.org/wiki/BeagleBoard]. 
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SERIAL PORT (AT-EVEREX) shown in Fig.1.2. In Fig.1.1, a null-modem 

cable can be seen which is needed as well for connecting to the host PC. 

 

 
 

 

 

 

 

 

   To start sending data from the board to the PC, a terminal program is 

needed to display the data out. For this purpose the well-known software 

Putty is recommended. Fig 1.1 and Fig 1.2 clarify the settings using serial 

communication for BeagleBoard in Putty. 

 

Figure 1.2: DB7-M to IDC-01 serial converter 

(after www.ocean-server.com ) 
 

  Figure 1.1: Null modem cable (after www.ethersol.com) 
 

http://www.ocean-server.com/
http://www.ethersol.com/
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Figure 1.1: Saving Putty session  
 

Figure 1.2: Serial configuration for BeagleBoard 
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SD Memory Card Configuration 
 

It is necessary to use a MMC SD memory card to run the operative system. 

The memory card needs a specific formatting for proper operation. This 

section shows how to create a dual partition card, booting from a FAT 

partition that can be read by the OMAP1 ROM boot loader and 

Linux/Windows utilizing an EXT1 partition for Linux root file system. 

 

SD device detection 
 

We plug the SD Card into the SD Card Reader and then plug the SD Card 

Reader into your system. After doing that, we do the following to determine 

which device it is on your system. This example uses 2GB SD card [1]. 

 

dmesg | tail 

... 

[ 0121.202021] sd 7:1:1:1: [sdc] Mode Sense: 1b 11 11 11 

[ 0121.202021] sd 7:1:1:1: [sdc] Assuming drive cache: write through 

[ 0121.202027] sdc: sdc0 

[ 0121.201177] sd 7:1:1:1: [sdc] Attached SCSI removable disk 

[ 0121.201012] sd 7:1:1:1: Attached scsi generic sg2 type 1 

... 

 

In this case, it shows up as /dev/sdc. 

 

Checking if the automounter has mounted the SD card 
 

Note there may be more than one partition (only one is shown in the 

example below). 

df -h 

 

Filesystem      Size        Used       Avail       Use%       Mounted on 

/dev/sdc0       111M       71 M         117 M      212      /media/disks 

 

Note the "Mounted on" field in the above (in this case /media/disk) and use 

that name in the umount commands below. 
 

Unmounting the SD card 

 

                  umount /media/disk 
 

Starting fdisk 

We choose the whole device (/dev/sdc), not a single partition (/dev/sdc0). 
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         sudo fdisk /dev/sdc 
 

Print the partition record 

In the following steps the commands between [ ] are the user inputs. 
 

Command (m for help): [p] 

Disk /dev/sdc: 2120 MB, 2120021221 bytes 

222 heads, 01 sectors/track, 212 cylinders 

Units = cylinders of 00102 * 202 = 1222211 bytes 

Device      Boot        Start        End        Blocks         Id         System 

/dev/sdc0      *             0            210       07712111    c     W72 FAT12 

(LBA) 
 

Partition 0 has different physical/logical endings: 

phys=(211, 221, 01) logical=(212, 211, 07) 

So we know the starting point. Make sure to write down the number of bytes 

on the card (in this example, 2120021221 bytes). 

 

Deleting existing partitions 

 

We delete any previous partitions. 
 

Command (m for help): [d] 

Selected partition 0 

 

We repeat this step in case there are more partitions. 

 

Set the memory card's geometry 

 

If the print out of the partition record does not show 222 heads,  

01 sectors/track, then do the following additional steps to set the proper 

geometry of the card. 

 

 Go into expert mode: 

 

                Command (m for help): [x] 
 

 Set the number of heads to 222: 
 

      Expert Command (m for help): [h] 

     Number of heads (0-220, default xxx): [222] 
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 Set the number of sectors to 01: 

 

         Expert Command (m for help): [s] 

                 Number of sectors (0-01, default xxx): [01] 
 

 Now calculate the number of cylinders of the SD card: 
 

512*63*255

cardSDtheonbytesofnumber
Cylinders   

So for this SD card model, the number of cylinders to use is 212 (i.e. 

truncate, don't round). 

cylinders9.245
512*63*255

2021654528
  

 
 
 

 Set the number of cylinders to the number calculated: 

 

          Expert Command (m for help): [c] 

         Number of cylinders (0-220, default xxx): [212] 
 

 Return to normal mode: 
  

                  Expert Command (m for help): [r] 

 

Checking the modifications 

 

We print the partition record to check the work done so far. 
 

Command (m for help): [p] 

Disk /dev/sdc: 2120 MB, 2120021221 bytes 

222 heads, 01 sectors/track, 212 cylinders 

Units = cylinders of 00102 * 202 = 1222211 bytes 

Device Boot        Start           End        Blocks Id         System 
 

Creating boot partition 
 

We create the FAT12 partition to provide booting for the board. 

Command (m for help): [n] 

Command action 

e extended 

p primary partition (0-1) 
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[p] 

Partition number (0-1): [0] 

First cylinder (0-212, default 0): [(press Enter)] 

Using default value 0 

Last cylinder or +size or +sizeM or +sizeK (0-212, default 212): [121] 

Command (m for help): [t] 

Selected partition 0 

Hex code (type L to list codes): [c] 

Changed system type of partition 0 to c (W72 FAT12 (LBA)) 

 

Important: We have to mark it as bootable. 

 

Command (m for help): [a] 

Partition number (0-1): [0] 

 

Creating Linux partition 

 

Create the ext1 partition which will contain the root file system. 

 

Command (m for help): [n] 

Command action 

e extended 

p primary partition (0-1) 

[p] 

Partition number (0-1): [2] 

First cylinder (22-212, default 22): [(press Enter)] 

Using default value 22 

Last cylinder or +size or +sizeM or +sizeK (22-212, default 212): [(press 

Enter)] 

Using default value 212 

 

We use the print command to check the work done so far. 

Command (m for help): [p] 

Disk /dev/sdc: 2120 MB, 2120021221 bytes 

222 heads, 01 sectors/track, 212 cylinders 

Units = cylinders of 00102 * 202 = 1222211 bytes 

Device     Boot     Start      End     Blocks     Id       System 

/dev/sdc0   *           0          20       117020    c      W72 FAT12 (LBA) 

/dev/sdc2               22        212     0221112  11          Linux 
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Saving settings 
 

We save the new partition record on the SD Card. This is an important step 

because all the work up to now is temporary. 

 

Command (m for help): [w] 

The partition table has been altered! 

Calling ioctl() to re-read partition table. 

WARNING: Re-reading the partition table failed with error 00: Device or 

resource busy. 

The kernel still uses the old table. 

The new table will be used at the next reboot. 

partitions, please see the fdisk manual page for additional information. 

Syncing disks. 

 

Formatting partitions 
 

The two partitions are given the volume names LABEL1 and LABEL2 by 

these commands. These volume labels can be substituted. 

 

 sudo mkfs.msdos -F 12 /dev/sdc0 -n LABEL0 

          mkfs.msdos 2.00 (02 Mar 2102) 

 sudo mkfs.ext1 -L LABEL2 /dev/sdc2 
 

mke2fs 0.11-WIP (01-Mar-2102) 

Filesystem label= 

OS type: Linux 

Block size=1170 (log=2) 

Fragment size=1170 (log=2) 

072172 inodes, 117270 blocks 

07171 blocks (2.112) reserved for the super user 

First data block=1 

Maximum filesystem blocks=112021011 

02 block groups 

12701 blocks per group, 12701 fragments per group 

00220 inodes per group 

Superblock backups stored on blocks: 

12701, 71111, 001111, 227170, 271702 

Writing inode tables: done 

Creating journal (1072 blocks): done 
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Writing superblocks and filesystem accounting information. 

Now the SD memory card is configured properly in order to copy the boot 

files and the file system which will boot up the operative system on the 

BeagleBoard. 

 

1.0.2  MPU-0121 sensors evaluation board 

 

The MPU-0111/MPU-0121™ family of parts are the world’s first and only 

0-axis Motion Tracking devices designed for the low power, low cost, and 

high performance requirements of smartphones, tablets and wearable sensors 

[1]. 

The MPU-0121 incorporates InvenSense’s MotionFusion™ and run-time 

calibration firmware that enables manufacturers to eliminate the costly and 

complex selection, qualification, and system level integration of discrete 

devices in motion-enabled products, and guarantees that sensor fusion 

algorithms and calibration procedures deliver optimal performance for 

consumers [1]. 

Motion interface is rapidly becoming a key function in many consumer 

electronics devices including smartphones, tablets, gaming consoles, and 

smart-TVs as it provides an intuitive way for consumers to interact with 

electronic devices by tracking motion in free space and delivering these 

motions as input commands. 

 According to [1], The MPU-0111/0121 devices combine a 1-axis 

gyroscope and a 1-axis accelerometer on the same silicon die together with 

an onboard Digital Motion Processor™ (DMP™) capable of processing 

complex 7-axis Motion Fusion algorithms. The parts' integrated 7-axis 

Motion Fusion algorithms access external magnetometers or other sensors 

through an auxiliary master I C bus, allowing the devices to gather a full set 

of sensor data without intervention from the system processor.   

The InvenSense MotionApps™ Platform that comes with the MPU-0121 

abstracts motion-based complexities, offloads sensor management from the 

operating system and provides a structured set of APIs for application 

development. 

For precision tracking of both fast and slow motions, the parts feature a user-

programmable gyro full-scale range of 0221, 0211, 00111, and 02111±/sec 

(dps) and a user-programmable accelerometer full-scale range of 02g, 01g, 

01g, and 000g [1]. 
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Table bellow shows the MPU0121 main characteristics  
 

MEMS Gyro MPU0121 MEMS Accelerometer MPU0121 

Gyroscope  range: 0221 º/s, 0211 º/s, 00111 

º/s, 02111 

Accelerometer range:  02g, 01 g,01g, 000g  

  Gyroscope ADC resolution:    00-bit Accelerometer ADC resolution:    00-bit 

 Scalable measurement range: 

010602.2612.1600.1 LSB/(º/s) 

Scalable measurement range: 00111, 

1072,117062111 LSB/g 

Total RMS Noise:   DLPFCFG=2 (011Hz) 

1.12 º/s-rms Rate Noise Spectral Density At 

01Hz 1.112 º/s/√Hz 

Power spectral density @01Hz  =  μ111g/√Hz 

Initial ZRO Tolerance at 22±C  :  021 º/s Zero G output :   X & Y axis =  021 mg,  

  Z axis= 011mg 

Table 1.0: MPU 0121 gyro & accelerometer characteristics [after 1] 

These two sensors along with a digital tri-axis compass and a temperature 

sensor has been collected together into a single evaluation board shown in 

Fig.1.0.  

 

 

 

This evaluation board can be used by itself using I
2
C or SPI (MPU0111 

only) or it can be connected to InvenSence 's ARM evaluation board for 

Figure 1.0: MPU0121 Evaluation board [after 2] 
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connecting to the host computer using USB interface. Shown in Fig.1.7 is 

the system diagram of the evaluation board. 

 

 

 

 

There are some jumpers on this evaluation board for special purposes, like 

jumper (J01) which is 01x2 pins including power supply, I
2
C pins, address 

pin, external clock, interrupt, and synchronization pin. Jumper (J01) on the 

top of the board is intended for connecting additional devices to EV board, 

such as camera image stabilization processor, or a digital-output compass, or 

a GPS.  

The three-pin power selection header (JP02) is used to select which voltage 

supply is fed to MPU. The 1-pin VLOGIV selection header (JP0) is used to 

select between 1V and VDD as a logic supply voltage. When VDD is 

selected as a logic supply voltage, the input voltage VDD should be between 

2.2-1.1V. But it is recommended to use 1V (Jumper 0, 0-2 short) to have 

the expected performance as stated in the datasheet. On the I
2
C bus, there are 

open drain pull up resistors connected, so there is no need that the user 

connect external pull up resistors. 
 

The MPU0121 EVB has the address of 1x01 when the address pin voltage is 

zero (pin 21on jumper JP01), but when the voltage of this pin is set to VDD 

(1V, Jumper 0, 0-2 short), the address will be changed to 1x07. That was 

very useful in our project, since we have 1 of this evaluation board, and two 

I
2
C buses on BeagleBoard. So, one can connect two of this evaluation board 

on the same bus.     

MPU.656 setup and data acquisition 

The IMU used in this project works with I
2
C protocol at a maximum speed 

of 111 kHz. Setup is performed by writing to the various configuration 

registers. We only needed to write to specified registers which can wake up 

the device, set the required registers, and then reading data. 
 

The procedure is as follow: 

0. Initialize I
2
C bus with the aimed sensor (by giving the bus number and 

IMU address). 

Figure 1.7: MPU0121 system diagram (after Invensense webpage) 
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2. Wakeup the sensor by writing zero to the bit number six of the power 

management register and specify clock source by writing to the last 

three LSB of the same register.   

1. Enable data-ready interrupt to synchronize the data reading with the 

BeagleBoard by writing one to the bit number zero of the interrupt 

enable register. 

1. Specify the sample rate by writing to the register sample rate divider.  

  The sample rate can be specified by dividing the gyroscope output rate 

by sample rate divider according to the following  
 

              Sample rate = Gyroscope output / (01sample rate divider). 
 

2. Specify the bandwidth and digital low pass filter  by writing to the 

register configuration 

0. Select the gyroscope and accelerometer full scale range by writing to 

the registers gyro configuration and accelerometer configuration 

respectively. 

7. Write to the bit number six of the register user control to enable the 

FIFO buffer. 

Stated above are the initialization and setup of the MPU0121 EVB, the 

reader is advised to read the MPU0121 register map and description for 

more detail of each register function and the other register settings.  
 

1.0.1  Circuit diagram  

Shown in Fig.1.1 is the circuit which has been made to connect the 

MPU0121 EVB to the BeagleBoard through I
2
C.  

 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

2V DC 

supply 

Serial port 

to PC 

USB OTG      

to PC 

IMU_1 
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IMU_2 

IMU_0 
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Because of the voltage different in logic lines between BeagleBoard and 

IMU, the logic level converter has been used with 2-line data transfer in both 

directions and 2-line data transfer in on direction. This logic level converter 

can transfer data up to 111 kHz, which is the maximum frequency of our 

IMU.  
 

IMU_0 and IMU_2 are connected on the I
2
C bus 2 and their addresses are 

1x07 and 1x01 respectively.IMU_1 and IMU_1 are connected on the I
2
C 

bus 1, with the addresses 1x07 and 1x01 respectively. The sensor side of the 

logic leveler is the high voltage (1.1V), while the right side is the low 

voltage (0.1V). 
 

1.2 Software environment  

   For the sake of reading and transferring data from /to hardware, there are 

some steps that have to be made on both Laptop and BeagleBoard. For the 

Laptop, Ubuntu 00.11 Linux operating system has been installed alongside 

Windows 7. The installation steps were straightforward as stated in the 

Ubuntu website. While for the BeagleBoard, it was somehow difficult to set 

it up for the required hardware configuration.  

 

   1.2.0 Operating system 

   Ångström, which is open-source, free software, Linux-based operating 

system has been installed on the BeagleBoard, which gives the minimum 

requirement (Console) for interfacing to the sensors from one side, and to 

connect to the Laptop from the other side. In the following section the 

details of how to install Ångström and the other requirements to setup the 

BeagleBoard will be clarified. Later on, the requirements of how to send and 

receive data between BeagleBoard and the Laptop will be stated. 

 

 Getting booting files 

 

  For first time booting of the BeagleBoard, the pre-built binaries and source 

code can be found in the following link: 

 

             http://www.angstrom-distribution.org/demo/beagleboard/ 

 

 

Figure 1.1: Circuit diagram 
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The following binary files are needed: 

• MLO 

• u-boot.bin 

• uImage 

• Angstrom-Beagleboard-demo-image-glibc-ipk-

2100.0beagleboard.rootfs.tar.bz2 
 

The ROM code on the BeagleBoard loads the MLO from MMC card for 

MMC booting. This booting is automatically established when a SD card is 

inserted on the board. The MLO binary then loads uboot.bin which is in 

charge to load the kernel image.  

The MLO allows the first boot-loader called X-loader starts up. The u-

boot.bin loads the second bootloader which is needed to start basic 

communication with the hardware and it will provide a basic environment 

based on a shell. In the u-boot prompt some variables can be set (kernel boot 

arguments), such as serial communication arguments, which kernel image 

should be loaded, place where the operative system will be loaded from (in 

our case from the external SD card), and many other options. The binary file 

uImage will pass the kernel image which is the kernel for our Linux system. 

The kernel is the responsible for the correct interaction with the hardware of 

the board and it's very important that this file is compiled properly in order 

to boot the Linux system successfully. In following chapters it will be 

described how to build our own uImage to get a customized kernel for our 

specific requirements. 
 

 Copying the binary files into the SD card 
 

We insert the SD card in the PC memory card reader. The three binary files 

described above have to be saved in the boot partition (FAT12) of the SD 

card by typing in the Laptop's Linux shell the following: 

 

                    cp MLO /media/LABEL0 

                    cp u-boot.bin /media/LABEL0 

                   cp uImage /media/LABEL0 

 

The commands order is very important. The files can be directly copied 

using a graphical file explorer instead typing the commands above. Finally 

the fourth file downloaded is the root file system which will be stored and 

uncompressed in the second partition of the SD card (EXT1).  
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 starting up Ångström 

 

Finally, the SD memory card is ready. Once Ångström is loaded, the prompt 

of Linux-Angström should be displayed. Now, the board is ready to start 

installing the necessary tools for developing the first application. To login in 

the system, we type root and press enter. Fig.1.7 is the typical layout of the  

Ångström's operating system at login step.  

 

 
   

 

 

 Connecting BeagleBoard with Laptop through USB 
 

It is required to connect BeagleBoard to the host computer through USB for 

easy file transfer between them, and also to make internet available in the 

BeagleBoard. In this scenario, the host computer will serve as a router for 

the Ångström device and it is required to configure accordingly. The 

detailed step by step procedure of this task is stated in [1].  
 

 Building applications for BeagleBoard 
 

We need to install a cross-compiler in the Laptop which will let us compile 

the programs for the BeagleBoard architecture (ARM processor). When the 

Figure 1.7: Ångström's terminal  
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program is compiled, we will transfer the binary file to the BeagleBoard 

through USB using scp file transfer protocol. When we try to compile the 

executable file out of the compilation in the Laptop, it will results in error 

since the compiled file is build for ARM architecture. it is recommended to 

read [1] where it is clearly stated how to build applications for BeagleBoard. 

There is also another way (user friendly) to compile debug and programs for 

the BeagleBoard using Eclipse platform which is highly recommended if the 

user writes long and complicated codes and is stated step by step for 

BeagleBone, which is the same as BeagleBoard, in the webpage of Dr. 

Derek Molloy. 

 

 BeagleBoard I
2
C setup  

   In this project we are required to have two I
2
C buses so that we will be 

able to connect the four sensors on them. BeagleBoard has three I
2
C buses, 

in which two of them are pinned out and can be used by the user. However, 

by default bus 2 is disabled due to a lack of pull-up resistors on the board, so 

external pull-ups to 0.1V must be added and the kernel recompiled to enable 

I
2
C-2. The detail of how to enabling it and setting the bus  frequency of both 

I
2
C s to maximum of 111 kHz is clearly stated in [1], so it is not described in 

here particularly due to the size of the thesis . 
 

1.2.2 Real time issues 
 

    Unlike classical microcontrollers, the BeagleBoard processor requires an 

operating system for proper operation, so a strong knowledge of how they 

work is required. For real time tasks where the execution time is critical, the 

operating system workload is a big issue. Background processes create 

latencies; however, they are essential for proper operation of the whole 

system. since the operating system that has been installed on BeagleBoard is 

Linux-based, by default it has no build-in real time operating system(RTOS) 

coming with it. According to [1], if the real time operating system is 

installed properly, the latency can be reduced from milliseconds to 

microseconds, and the accuracy of the data reading is increased. The 

working principle of a proposed RTOS used in [1], which is Xenomai and I-

pipe, add a extra layer between the hardware and the Linux kernel, to 

manage real-time tasks separately. As shown in the Fig.1.01. The real-time 

operating system has not been used in this thesis due to the time limitation, 

since it requires kernel reconfiguration and recompilation. 

 



 11 

 

 

 

4        Experiments and results 

 

1.0 Heading calculation by Maytagging technique 

   The true north can be found if the earth rotation is measured properly by 

the gyro. The earth rotation rate according to World Geodic System 0711 

(WGS11) is Ωe=7272002 x 01
-00 

rad/s [0]. The lowest input range of the 

MPU0121 is 0221º/s while the magnitude of the signal needs to be detected 

is approximately 1.111 º/s. Under this condition, it can be seen that 

detecting such a week signal requires precise error analysis. 
 

The proposed method for error characterization is the Allan variance that is 

already described in section 2.2.0. The type of error that rapidly changes in 

a short period of time in the gyro's output signal is called bias instability. 

Bias instability measurement describes how the dynamic bias of a device 

may change over a specified period of time, typically around 011 seconds, in 

fixed conditions (usually including constant temperature) [7]. Bias 

instability is usually specified as a 0σ value with units ◦/h, or ◦/s for less 

accurate devices. Under the random walk model bias instability can be 

interpreted as follows; If Bt is the known bias at time t, then a 0σ bias 

stability of 1.10◦/h over 011 seconds means that the bias at time (t + 011) 

seconds is a random variable with expected value Bt and standard deviation 

1.10◦/h [7]. 

Figure 1.01: RTOS principle 
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For capturing the bias instability and other errors in our gyroscope, data 

from   all MPU0121 modules has been logged for about 01 hours at a 

sample rate of 21 Hz and at room temperature and the output for one of them 

is shown in Fig.1.0. There were 1 units of this module; each unit has 1 axis 

gyroscope. In our work, only x and y axis are used for finding north 

direction. 

 
 
 

Bellow is the Allan variance graph for each gyroscope generated after the 

MATLAB code created by [07]. 

 

Figure 1.2: Allan deviation 
 

Figure 1.0: Raw data as a function of time 
 

Good candidates 

to be used 



 11 

 

From Figure 1.2, it is obvious that the bias stability is different for each 

sensor and also for each axis. For example the x axis of fourth sensor is 

about 1 º/h while for its y axis it is about 1 º/h. 
 

Based on this plot, the x and y axis of first sensor and x axis of the fourth 

sensor and y axis of the third sensor are used in this project since the include 

the least bias instability and they are almost at the same averaging time τ.  

Measuring the Earth's rotation rate 

  In order to measure the magnitude of the Earth's rotation rate, the external 

factors that affect the output data of the gyroscope sensor must be carefully 

compensated for. One of these factors is the gravitational force which has a 

large effect over the gyroscope data. To compensate for this factor, the 

sensitive axis of the gyro can be aligned parallel with the local horizontal 

plane as shown bellow [0]. 

 

 

 

By using this method, the gravity effect can be eliminated because its value 

will be the same in all measurement positions. Also to compensate for 

gyroscope static bias, the turntable is used and rotated 011 degree. 

 

The mathematical model for the gyroscope reading at each position is [0] 

Figure 1.1: GPS/INS coordinate system [after 1] 
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              ωposition= ωearth cosφ cosψ + b + bg                                                         

(1.0) 

              ωposition1011º= - ωearth cosφ cosψ + b + bg                                                              

(1.2) 

Where b is gyro bias, φ is the latitude, and bg is g-sensitivity which is 

unknown but constant value. Ψ represents the angle between the sensing axis 

and the north direction. By subtracting equation 1.0 from 1.2 we get [0] 

 

                Ωe cosφ cosψ=
2

180


positionposition 
  

So, if the latitude and earth rate are known, the only unknown would be the 

angle ψ. 

The experiments were conducted in Siegen, Germany at latitude 21.1º N. the 

sampling rate of the sensor was 21 Hz, and the MATLAB R2111a is used 

for data processing and plotting. 
 

The sensor axes were aligned with the north direction as shown in Fig.1.1, 

and then the data were logged for about 011 second according to Allan 

variance plot. Then the setup was rotated 011º to the opposite position. We 

took 01 position, starting from 1 (north) for y axis and 71 (East) for x axis 

and incrementing 01 º clockwise each time.  

 

 

 

 

 

 

 

 

 

 

 

 

 (1.1) 

Ys 

Xs 

Turn table 

Logic leveler 

BeagleBoard 

1 2 3 4 

Sensor array 
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According to the setup shown above, the first measurement at zero position 

(y-axis is pointing to the north and x-axis is pointing to the east) for y-axis 

should be maximum and for x-axis should be almost zero after we remove 

the bias from measurements (by rotating 011 degree). 
 

After the measurements were completed, the files have been uploaded to 

MATLAB program for analysis and plotting. 
 

Here, we first tried to check whether the sensor can detect the earth rotation 

or not. To do so, we gave the value of angle ψ to be zero when the y-axis of 

the sensors are pointing to the north direction and then increasing it 01º for 

each new position. so, according to equation 1.1 the angles φ and ψ are 

known, and ωposition is the sensor reading at zero position, and ωposition1011º  is 

also the sensor reading at opposite position then the only unknown will be 

the earth's rotation Ωe. 

Fig.1.2 shows how the angle ψ is assigned and how the rotations are 

performed 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: sensor's axes alignment 

 

ψ 

 

ψ 

 

Xs 

 

Ys 

 

Figure 1.2: Angle ψ and sensor's rotation direction 
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The earth rotation value detected by the sensor's y-axis is shown bellow.  

 

 

 

In the Fig.1.0, the blue line is the theoretical value of the earth rotation that 

is supposed to be sensed by the sensors. It is the calculated by multiplying 

the earth rotation with the cosine of the rotated angle ψ, in which angle ψ 

starts from 1º to 011º. The y-axis of first sensor, plotted in green line, and 

the y-axis of the third sensor, plotted in red line, are fluctuating around the 

theoretical value of earth rotation.  
 

The error in the earth rotation detection can be reduced by taking the mean 

value of both sensors as it can be seen in cyan color, which is more close to 

the theoretical value of earth rotation. 

 

 

Figure 1.0:  measured Earth rotation with sensor's y-axis. 
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The same measurement for sensor x-axis is shown in the figure bellow. 

 

 

 

  

As the angle ψ increases, the angular rotation sensed by the sensors 

increased until they reach their maximum value at angle 011º then they start 

to decrease again as the angle gets larger. Here is also the mean value of the 

sensors output give a better result which is closer to the theoretical value.  
 

After it has been found that the sensor is able to detect the earth rotation, the 

next step is to measure the north direction angle ψ. 
 

Equation 1 can be rearranged and expressed in terms of angle ψ [0] 

 

Figure 1.7:  measured Earth rotation with sensor's x-axis. 
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            ψ =  
e

positionposition






*cos*2
cos

1801



 

 

Based on this equation, the following figure has been generated, which 

represents the detected angle with north direction using y-axis of the sensors. 

 

  

 

The maximum value of the Earth's rotation in Siegen is about 7.11 deg/h, 

but as it can be seen from Fig.1.0, at the beginning and the end of the graph 

the sensors reading exceed this value because of added noise, and if we 

substitute them in equation 1.2, we will have undefined number for angle ψ. 

to solve this problem, we need to normalize these exceeded values to the 

range bellow the Earth's rotation. 

 

Here it should be mentioned that the north finding system using this method 

has 011 º ambiguities, since we are using cosine function. For example when 

the result of (ωpos -ωpos1011) in equation 1.2 is 1.2, the angle ψ would be 01 º, 

but when it is -1.2, the angle ψ would be 021º. This can be solved by 

checking the sign of x and y axis of the sensors. For example, when the 

value of gyro y-axis is positive and the x-axis is negative, then we can tell 

which angle we are measuring with the north direction. Or it can be done, 

(1.2) 

Figure 1.1:  measured angle ψ using y-axis of sensors 

 

 



 10 

e.g., by rotating 101± at a certain spacing and fitting a sine curve on the 

measurements [0]. 

 

Figure below shows the sign of the detected earth rotation, and it matches 

the result obtained shown in figures 1.0 and 1.7. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

1.2    Gyro-bias compensation using distributed accelerometer triad 

  In this method, the bias in the gyroscope is detected by means of a 

distributed accelerometer triad. If the gyroscope bias is detected, the 

gyroscope can be used to detect the Earth rotation.  
 

As it is stated in section 1.0, the gyroscope is used to find the Earth rotation 

by logging data at first position for a specified time, then rotating the setup 

with 011 degree to the second position. The purpose of this rotation was to 

remove the bias from the gyroscope. Here we are going to detect this bias 

and subtract it from gyro bias. 
 

The idea behind this method is the accelerometers is used to calculate 

rotational speed using extended Kalman filtering, and then the output of 

X-axis 

North 

Y-axis 

+++++++

+++++++ 

- - - - - - - 

- - - - - - - 

East 

Figure 1.7:  Gyroscope output sign ambiguity 
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gyroscope is compared with the rotational speed calculated from 

accelerometer triad to detect the gyroscope bias. 

  

 

  

Kalman filtering 

  The Kalman filter is a tool that can estimate the variables of a wide range 

of processes. In mathematical terms we would say that a Kalman filter 

estimates the states of a linear system. The Kalman filter not only works 

well in practice, but it is theoretically attractive because it can be shown that 

of all possible filters, it is the one that minimizes the variance of the 

estimation error. Kalman filters are often implemented in embedded control 

systems because in order to control a process, you first need an accurate 

estimate of the process variables [01]. The filter is very powerful in several 

aspects: it supports estimations of past, present, and even future states, and it 

can do so even when the precise nature of the modeled system is unknown. 

 
 

Figure bellow shows the simple working principle of the Kalman filter. 

 

 

Figure 1.01:  Update time and measurement in Kalman filter 

 

In Kalman filter, a process is estimated by using feedback control. It 

computes the process state at some time and then obtains feedback in the 

form of (noisy) measurements. The equations fall into two groups:  

time update equations and measurement update equations. The time update 

equations are responsible for projecting forward (in time) the current state 

and error covariance estimates to obtain the a priori estimates for the next 

time step. The time update projects the current state estimate ahead in time 

while the measurement update adjusts the time estimate. 
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The Kalman filter removes noise by assuming a pre-defined model of a 

system. Therefore, the Kalman filter model must be meaningful. It should be 

defined as follows [00]: 
 

0. Understand the situation: Look at the problem. Break it down to the 

mathematical basics. If you don’t do this, you may end up doing unneeded 

work. 

2. Model the state process: Start with a basic model. It may not work 

effectively at first, but this can be refined later. 

1. Model the measurement process: Analyze how you are going to 

measure the process. The measurement space may not be in the same space 

as the state (e.g., using an electrical diode to measure weight, an electrical 

reading does not easily translate to a weight). 

1. Model the noise: This needs to be done for both the state and 

measurement process. The base Kalman filter assumes Gaussian (white) 

noise, so make the variance and covariance (error) meaningful (i.e., make 

sure that the error you model is suitable for the situation). 

2. Test the filter: Often overlooked, use synthetic data if necessary (e.g., if 

the process is not safe to test on a live environment). See if the filter is 

behaving as it should. 

0. Refine filter: Try to change the noise parameters (filter), as this is the 

easiest to change. If necessary go back further, you may need to rethink the 

situation. 

 

 

Multiple distributed accelerometer triad  
 

We focus on configurations consisting of twelve mono-axial accelerometers. 

Without loss of generality; we consider the set of four tri-axial 

accelerometers shown in Fig.1.02 as an example configuration that follows 

the rules for extracting the angular information vector (AIV) without 

inhibiting singularity of the coefficient matrix [0]. 

 

 

Mainly we consider this configuration because a minimum of twelve 

accelerometers are needed to determine the magnitude of the angular 

velocity and its direction (algebraic sign cannot be determined uniquely). 

The greatest amount of angular motion information, which is in the nine 

angular terms that we show next, can be extracted from this configuration. 

Moreover, this configuration has a low geometric dilution of precision 

(GDOP) factor for both angular and translational acceleration without the 
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central accelerometer triad. Finally yet importantly, it is the most practical 

configuration because IMUs exist in triads of gyros and accelerometers [0]. 

 

 

 
 
 Figure 1.02: Configuration of multiple distributed accelerometers  

 

 

For the case of uniform distribution distance d (which is 11 cm), The AIV is 

[0]:   

 
.

/ 2C A D Aa a a a dz z y yx      

 
.

/ 2D A B Aa a a a dz zx xy                                                                        (1.0)     

 
.

/ 2B A C Aa a a a dy y x xz      
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  / 2B A C Aa a a a dy y x xx y       

  / 2B A D Aa a a a dz z x xzx                                       (1.7)     

  / 2C A D Aa a a a dz z y yzy       

 

 2 / 2B A C A D Aa a a a a a dz zx x x y y        

 2 / 2C A B A D Aa a a a a a dz zy y y x x                                         (1.1)     

 2 / 2D A B A C Aa a a a a a dz z z x x y y        

All previous equations are linear combinations of accelerometers 

measurements. The notation triad

axisa   refers to the distributed accelerometer 

measurement with the superscript referring to the triad location and a 

subscript referring to the axis index. 
  

 

The calibration of the triads are performed after that as stated in section 

2.1.0 so that the sensors axes are unified to the triad axis and also to find 

misalignment, scale factor, and bias. 

 

The three-State model EKF 
 

Based on the previously derived AIV (1.0, 1.7, and 1.1), we can formulate 

the EKF setup. The quadratic terms do not give a unique angular velocity 

vector solution. Instead we get two solutions. In our setup, we consider only 

a fixed accelerometers configuration. For the determination of the algebraic 

sign in a completely GF-IMU, the gyros have been used to insure a correct 

sign convergence in the GF-IMU.  We are interested in estimating the 

angular velocity component along each body axis in 1D. 

In reality, the continuous angular velocity vector is replaced with the angular 

change vector because the computerized implementation is discrete. The 

angular change is the sampled angular velocity multiplied by the sampling 

time and is given as [0] 
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    1 2 3[ ] [ ]T Tx x x x zx y                                               (1.7)     

 

 

 

0.    Initialization  

       The initial state vector can be set as 

          0 0
00 0

ˆ { } [ ]Tx E x zx y  

            (1.01)     

       The initial estimation error covariance is given as 

          0 0 0 00
ˆ ˆ{( )( ) }TP E x x x x
                        (1.00)  

2.   Prediction 

     In discrete time, the actual output of each accelerometer is the velocity 

change; hence the output of (1.0) is the angular velocity change vector α . 

The process model based on Euler integration is 
         

          
1 1 1k k k kx x x xt w  
  

                      

 
1 1 1k k k ky y y yt w  
  

                (1.02) 

1 1 1k k k kz z z zt w  
  

                 
 

We then define the process input as the following  
 

 [ ]T

x y zu t t t t                  (1.01) 
 

Using (1.01), the process given in (1.02) has a linear form of  
 

 
1 1 11 1

1 1 3 3

k k kk k
k

k k xl

x F x G u w

F G

   

  

  
                   (1.01) 

 

We assume that the uncertainty in the process is mainly due to the 

uncertainty in the angular velocity change. Here, we consider the error of 

each accelerometer as white Gaussian noise for simplicity. For an 

accelerometer error accounting for the remaining bias, we developed a 

solution utilizing the dynamic models to estimate the bias parameters in the 

nine angular information terms. In that solution, the bias parameters and the 

angular acceleration vector are augmented within the state-space model to 

form a 02-state model. For that process update, we used the Wiener process 

or simply the nearly constant acceleration model. 

When using such a model, all the bias parameters in the AIV become 

observable under the condition that the angular acceleration has a non-zero 

magnitude.  



 22 

The three-state model has the advantage of simple calculations because only 

three states need to be estimated. Moreover, there is no need to make an 

assumption about the dynamics of the motion, and hence such a solution fits 

most scenarios. Each accelerometer discrete time measurement is composed 

of true value plus a white noise component 

 /meas true acca a w t                        (1.02) 
 

The white noise accw has the unit of g /Hz, where g is the gravity or its 

equivalent derivatives. The discrete white noise depends on the square root 

of the sampling time t . The measured velocity change of each 

accelerometer is expressed as 
 

 meas true accv v w t                         (1.00) 

The variance Ra of each accelerometer measurement of velocity change is 
  

 2 2{( ) } { }a meas true accR E v v E w t                                              (1.07)  
 

All accelerometers are modeled with a common upper bound of the noise 

variance, as they would be in reality. The error corrupting the angular 

acceleration vector given in (1.0) is inherited from the accelerometers' 

errors, as it is a linear combination of accelerometers. This combination 

results in a correlated process noise, and its covariance is computed as 
 

  
2

1 2

1 1
1

4 4

1 1
1

4 4

1 1
1

4 4

a
k

R
Q t

d

 
  

 
         

 
  
  

        (1.01) 

The predicted or a priori estimation error covariance is updated as  
  

 1 1 1 1

T

k k k k kP F P F Q 

              (1.07) 

The predicted or priori state estimate is updated as  

 1 11 1
ˆ ˆ

k k kk kx xF G u 

             (1.21) 

1.    Measurement update 

       We plug the measured velocity changes of the accelerometers in the six 

quadratic terms in to (1.7) and (1.1) and multiply the resulting sum by the 

sampling time to derive the measurement of the state vector. Considering the 

existence of white Gaussian noise in each accelerometer measurement, the 

observation inherits also a white Gaussian noise v vector 
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2 2 2

1 2 1 2 2 3 1 2 3

61[ ..... ]

( , ) [ ]T

kk k

T

k

y h x v x x x x x x x x x

v v

 
                (1.20) 

The Jacobian of the measurement vector is computed as 
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3 2
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       (1.22) 

The measurement is corrected, and its covariance is computed as 

 2

2

1 1 1
1 0 0

4 4 2

1 1 1
1 0 0

4 4 2

1 1 1
1 0 0

4 4 2
(

1 3 1 1
0 0

2 2 2 2

1 1 3 1
0 0

2 2 2 2

1 1 1 3
0 0

2 2 2 2

) a
k

R
R t

d

 
 

 
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 
 
 

   
     

 
   

 
 

   
 
 
    

         (1.21) 

The process noise is correlated with the measurement noise, and its cross-

covariance is computed as 
 

 

1

2

2

1 1 1 1
0 0

4 4 2 2

1 1 1 1
0 0

4 4 2 2

1 1 1 1
0 0

4 4 2 2

{ }

( )

T

k j k k j

a
k

E w v M

R
M t

d

  

 
  
 

         
 
  
  



 
      (1.21) 

The Kalman gain is updated since the cross-covariance has been considered 

to have better performance. 
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 1( )( )T T T T

k k k k k k k k k k k kK P H M H P H H M M H R               (1.22) 

The corrected or posteriori estimation error covariance is updated as 

 ( )T

k k k k k kP P K H P M             (1.20) 

The corrected or posteriori state estimate is updated as  

 ( ( ,0))ˆ ˆ ˆ
k k k kk k

x x K y h x
  

           (1.27) 

Then we used MTLAB program to detect the bias of the gyroscope by 

comparing the rotational speed obtained from the accelerometer triad with 

the gyroscope rotational speed. 
 

The gyro-bias compensation by using gyro-free IMU configuration is based 

on the fact that the gyro-free IMU gives the angular information vector 

(AIV) which can be corrected from the bias. 
 

Hence, the bias-free AIV can correct for the gyro bias using proper 

integration filter. This system has been implemented using 1x MPU0121 

accelerometers and 0 gyro triad as shown in Fig.1.02. This method is not 

able to be used to find the north direction because the dynamic part of the 

gyro bias is dependent upon the Earth's gravity. However, this method can 

correct for the relatively large bias values as we will show in the next 

coming figures. The bias of the AIV can be captured easily because in a 

static position, the angular acceleration due to the Earth rotation is should be 

zero, and hence what could be measured is the bias. 
 

Similarly, quadratic terms due to the Earth's rotation are extremely small and 

hence their values should be very close to zero and it can be used to find the 

bias in the static position. So, the system can be used to have a bias-free gyro 

system. 

We can use a profile of motion that consists of a static and dynamic phases. 

The static phase corrects for the AIV-bias, and the dynamic phase corrects 

for the gyro-bias. 

Figures below show how the gyroscope added bias can be detect using a 

described filter. For that, we used different value of biases and checked the 

convergence of the estimated bias using described method above. 
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Fig.1.01 shows the estimation gyro bias for the added gyro bias of 1.0 rad/s.  

 

 
Figure 1.01: Estimated gyro bias when added bias is 1.0 rad/s 

 

Then the added bias has been increased to 1.0 rad/s to see the filter behavior. 

From Fig.1.01, it is clear that the bigger the added bias, the better the filter 

performance would be, and the more the detected bias.  
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Figure 1.01: Estimated gyro bias when added bias is 1.0 rad/s 

 

 

5     Conclusion and future work 

 
2.0 Conclusion 
 

   This thesis has described a method for finding a heading direction using 

low cost MEMS inertial measurement units. The Gyroscope which was used 

as a stand-alone sensor in the first method is determined to be good enough 

for the detection of the Earth rotation.  
 

   The characterization of the errors that are involved with the MEMS 

Gyroscope was very crucial, since the noise level of the sensor can be 

measured and then compared with the signal that is needed to be measured, 

in this case the Earth's rotation, to see whether the signal to noise ratio is low 

enough to have a correct measurement. 
 

   Allan variance, which is a powerful tool used for IMU sensor error 

characterization, was used to characterize the errors of gyroscope. The bias 

instability is measured for each axis of the gyroscopes and shown that each 

gyroscope axis has different bias instability value. The best candidates, those 

who have lowest bias instability level, was selected and used since the bias 

instability threshold must not exceed the Earth's rotation measured signal.  
 

    IMU calibration was performed to obtain the meaningful physical value 

out of a raw data coming out of sensors. Also it united different coordinate 
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frame of the accelerometer triads into one coordinate frame. Then the bias, 

misalignment, scale factor was measured, as the output parameters from the 

calibration process. 
 

   Earth rotation has been measured using Maytagging (gyrocompassing) 

method. The north direction from the detected rotation was calculated and 

compared with the theoretical value of the turntable rotated angle. The 

results showed that the proposed type of gyroscope was suited for detecting 

the low signal of Earth's rotation with some percentage of error that was 

caused by the bias fluctuation from temperature change between the 

measurements. 
 

  Finally, the accelerometer triad was used to detect the bias fluctuation of the 

gyroscope. Extended Kalman filter was used to calculate rotational speed out 

of the linear acceleration from the accelerometer. Then the rotational speed 

from accelerometers was compared with the gyroscope rotational speed to 

track the bias fluctuation of the gyroscope. While the frame was moved in a 

1D space, the gravity affected the gyroscope measurements and let to 

making it somehow difficult to track the whole part of gyroscope bias, so we 

added some bigger value to check the functionality of the filter. 

 

2.2 Future work 

 
 

 The north finding system should be tested on an actual ground 

navigation platform.  

 

 Kalman filter can be used with taking temperature compensation into 

account to increase the performance of the gyroscope. 

 

 Real-time system can be realized on the BeagleBoard's operating 

system like Xeonomai to reduce the latency of the data logging 

process and gaining higher sampling rate out of the system. 
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Appendix I.    

C- code 

/******MPU0606.c******/ 

#include <string.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <time.h>   

#include <unistd.h> 

#include <linux/i2c-dev.h> 

#include <sys/ioctl.h> 

#include <sys/time.h> 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <sched.h> 

#include <fcntl.h> 

#include <stdint.h> //used for int61_t  

#include <errno.h> 

#include "MPU1606.h" 

#include "i2c.h" 

 

unsigned char XACCH; 
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unsigned char YACCH; 

unsigned char ZACCH; 

unsigned char XACCL; 

unsigned char YACCL; 

unsigned char ZACCL; 

unsigned char XGYROH; 

unsigned char YGYROH; 

unsigned char ZGYROH; 

unsigned char XGYROL; 

unsigned char YGYROL; 

unsigned char ZGYROL; 

unsigned char FIFO; 

unsigned char TEMPH; 

unsigned char TEMPL; 

unsigned char interrupt; 

 

float sensor6[0666666]={6},sensor2[0666666]={6}, 

sensor3[0666666]={6}, 

sensor4[0666666]={6}; 

int61_t aX6,aY6,aZ6,gX6[0666666]={6},gY6[0666666]={6}, 

gZ6[0666666]={6},aX2,aY2,aZ2;    

 //index  6 reffers to rensor on bus-3 with address 6x16  

 //index  2 reffers to rensor on bus-3 with address 6x16  

 int61_t aX3,aY3,aZ3,gX3,gY3,gZ3,aX4, 

 aY4,aZ4,gX4,gY4,gZ4,temp;              

int write_address(unsigned char reg){ 

    buf[6] = reg; 

    if (write(i2c_file,buf,6) != 6) { 

        printf("Failed to write to the i2c bus.\n"); 

        printf("%s\n",strerror(errno)); 

        return 6; 

    } 

    return 6; 

} 

 

/**********************************************************

*********/ 

//Write a byte to an address 

int write_byte(unsigned char reg, unsigned char data){ 

 

    buf[6] = reg; 

    buf[6] = data; 

 

    if (write(i2c_file,buf,2) != 2) { 

        printf("Failed to write to the i2c bus.\n"); 

        printf("%s\n\n",strerror(errno)); 

        return 6; 

    } 

    return 6; 
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} 

 

/********************************************************/ 

//Read a byte from the current address 

int read_current_byte(unsigned char * data){ 

 

    if (read(i2c_file,buf,6) != 6) { 

        printf("Failed to read from the i2c bus.\n"); 

        printf("%s\n\n",strerror(errno)); 

        return 6; 

    } 

    *data = buf[6]; 

    return 6; 

} 

/********************************************************/ 

//Read a byte from the passed register 

int read_byte(unsigned char reg, unsigned char * data){ 

 

    //Write the register's address 

    if(write_address(reg) == 6) 

        return 6; 

      

    //Read from that address 

    return read_current_byte(data); 

} 

 

/******************* MAIN*****************************/ 

int main() { 

            

 int add=6x16,i; 

 

 for(i=6;i<2;i++) 

          {  

  init_i2c(add,2);  

  write_byte(PWR_MGMT_6,PWR_MGMT_6_V_R); //reset 

the device 

  write_byte(USER_CTRL,6x66 ); 

  write_byte(USER_CTRL,6x63 ); 

   close(i2c_file); 

  add=6x16; 

   } 

         add=6x16; 

 for(i=6;i<2;i++) 

          {  

  init_i2c(add,3);  

  write_byte(PWR_MGMT_6,PWR_MGMT_6_V_R); //reset 

the device 

  write_byte(USER_CTRL,6x66 ); 

  write_byte(USER_CTRL,6x63 ); 
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   close(i2c_file); 

  add=6x16; 

   } 

         

      add=6x16; 

  //initialize sensors on bus 2 

 for(i=6;i<2;i++) 

          {  

  init_i2c(add,2);  //open i2c bus, address 

6x16.when i becomes 6, sensor with address 6x16 will be 

initialized 

         write_byte(PWR_MGMT_6,  PWR_MGMT_6_V); //wake-

up the sensor 

  write_byte(INT_ENABLE,  INT_ENABLE_V); //enable 

data ready interrupt 

  write_byte(PWR_MGMT_2,PWR_MGMT_2_V_R); 

//deactivate standby mode 

         write_byte(SMPLRT_DIV,  SMPLRT_DIV_V); 

//sample rate = gyro output 

  write_byte(CONFIG,CONFIG_V); //gyro output = 6kHz 

  write_byte(GYRO_CONFIG,  GYRO_CONFIG_V); //gyro 

scale +/- 206 deg/sec 

  write_byte(ACCEL_CONFIG,  ACCEL_CONFIG_V); //acc 

scale +/- 2g 

  write_byte(USER_CTRL,USER_CTRL_V ); 

  write_byte(FIFO_EN,6x66);   //enable FIFO 

buffer  

   close(i2c_file);  

    

         add=6x16;  

   } 

         add=6x16;  //reset address, since it became 6x16 

from previous step 

 

   //initialize sensors on bus 3 

 for(i=6;i<2;i++) 

          {  

  init_i2c(add,3);  //open i2c bus, address 

6x16.when i becomes 6, sensor        

with address 6x16 will be initialized 

  write_byte(PWR_MGMT_6,  PWR_MGMT_6_V); //wake-up 

the sensor 

  write_byte(INT_ENABLE,  INT_ENABLE_V);   

  write_byte(PWR_MGMT_2,PWR_MGMT_2_V_R); 

//deactivate standby         

       mode 

         write_byte(SMPLRT_DIV,  SMPLRT_DIV_V); 

//sample rate = gyro         

     output 
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  write_byte(CONFIG,CONFIG_V); //gyro output = 6kHz 

  write_byte(GYRO_CONFIG,  GYRO_CONFIG_V); //gyro 

scale +/- 206               

deg/sec 

  write_byte(ACCEL_CONFIG,  ACCEL_CONFIG_V); //acc 

scale +/- 2g 

  write_byte(USER_CTRL,USER_CTRL_V ); 

  write_byte(FIFO_EN,6x66);   //enable FIFO 

buffer          

  close(i2c_file); 

         add=6x16;  

   } 

 /****************************************************/ 

  //write data to a txt file 

   FILE *p = NULL; 

    char *file = 

"/home/programs/bias_detection.txt";   

   p = fopen(file, "w"); 

    if (p== NULL) { 

    printf("Error in opening a file."); 

    } 

  

   usleep(666666); //wait 666 msec for the data to be ready 

 

/********************************************************/ 

   printf("data reading started\n "); 

  long n=6,j=6; 

  int number_of_samples=6666;  //data logging for 26 

second 

    

       while(n<number_of_samples)      

        {       

  //reading from sensor 6 (i2cbus -2 address 6x16) 

  init_i2c(6x1692); 

  read_byte(INT_STATUS, &interrupt);   //using 

polling of data when a                      

   new data is available 

  close(i2c_file); 

  if(interrupt & 6x66){ 

  init_i2c(6x1692); 

  for(j=n*1;j<(n*1+1);j++) 

  {   

  read_byte(6x44,&FIFO);  

  sensor6[j]=FIFO;    

    

  } 

  read_byte(GYRO_XOUT_H, &XGYROH); 

  read_byte(GYRO_XOUT_L, &XGYROL); 

  gX6[n]=((XGYROH)<<6) | XGYROL; 
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  read_byte(GYRO_YOUT_H, &YGYROH); 

  read_byte(GYRO_YOUT_L, &YGYROL); 

  gY6[n]=((YGYROH)<<6) | YGYROL; 

  read_byte(GYRO_ZOUT_H, &ZGYROH); 

  read_byte(GYRO_ZOUT_L, &ZGYROL); 

  gZ6[n]=((ZGYROH)<<6) | ZGYROL; 

  close(i2c_file);  //close the connection  

/*********************************************************/ 

        init_i2c(6x1692); 

  for(j=n*1;j<(n*1+1);j++) 

  {   

  read_byte(6x44,&FIFO);  

  sensor2[j]=FIFO;    

    

  } 

  close(i2c_file);  //close the connection 

  init_i2c(6x1693); 

  for(j=n*1;j<(n*1+1);j++) 

  {   

  read_byte(6x44,&FIFO);  

  sensor3[j]=FIFO;    

    

  } 

  close(i2c_file);  //close the connection 

  init_i2c(6x1693); 

  for(j=n*1;j<(n*1+1);j++) 

  {   

  read_byte(6x44,&FIFO);  

  sensor4[j]=FIFO;    

    

  } 

  close(i2c_file);  //close the connection 

 

   

  n=n+6; 

  }   

 } 

   

n=6; 

    while(n<number_of_samples)      

        {      

 for(j=n*1;j<(n*1+6);j++) 

  {         

   XACCH=sensor6[j]; 

         XACCL=sensor6[j+6]; 

  YACCH=sensor6[j+2]; 

  YACCL=sensor6[j+3]; 

  ZACCH=sensor6[j+4]; 

  ZACCL=sensor6[j+0]; 
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  } 

  aX6=((XACCH)<<6) | XACCL; 

  aY6=((YACCH)<<6) | YACCL; 

  aZ6=((ZACCH)<<6) | ZACCL; 

   

/*******************************************************/ 

 for(j=n*1;j<(n*1+6);j++) 

  {    

  XACCH=sensor2[j]; 

  XACCL=sensor2[j+6]; 

  YACCH=sensor2[j+2]; 

  YACCL=sensor2[j+3]; 

  ZACCH=sensor2[j+4]; 

  ZACCL=sensor2[j+0]; 

  } 

          aX2=((XACCH)<<6) | XACCL; 

  aY2=((YACCH)<<6) | YACCL; 

  aZ2=((ZACCH)<<6) | ZACCL;   

/*******************************************************/ 

 for(j=n*1;j<(n*1+6);j++) 

  {     

      XACCH=sensor3[j]; 

  XACCL=sensor3[j+6]; 

  YACCH=sensor3[j+2]; 

  YACCL=sensor3[j+3]; 

  ZACCH=sensor3[j+4]; 

  ZACCL=sensor3[j+0]; 

  } 

          aX3=((XACCH)<<6) | XACCL; 

  aY3=((YACCH)<<6) | YACCL; 

  aZ3=((ZACCH)<<6) | ZACCL;    

     

/********************************************************/ 

 for(j=n*1;j<(n*1+6);j++) 

  {      

  XACCH=sensor4[j]; 

  XACCL=sensor4[j+6]; 

  YACCH=sensor4[j+2]; 

  YACCL=sensor4[j+3]; 

  ZACCH=sensor4[j+4]; 

  ZACCL=sensor4[j+0]; 

  } 

          aX4=((XACCH)<<6) | XACCL; 

  aY4=((YACCH)<<6) | YACCL; 

  aZ4=((ZACCH)<<6) | ZACCL;    

      

 fprintf(p,"%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\t 

%d\t %d\t %d\t %d\t %d\t %d\t 
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%d\n",aX6,aY6,aZ6,aX2,aY2,aZ2,aX3,aY3,aZ3,aX4,aY4,aZ4,gX6[n

],gY6[n],gZ6[n]); 

   

  n=n+6; 

    } 

    printf("data are successfully written to the 

file\n "); 

   fclose(p); 

   return 6; 

} 

/******* MPU0606.h ********/ 
#ifndef _MPU1606_H_ 

#define _MPU1606_H_ 

#define ADDRESS_AD6_LOW     6x16 // address pin low (GND),  

    default for InvenSense evaluation board 

#define ADDRESS_AD6_HIGH    6x16 // address pin high (VCC) 

#define SMPLRT_DIV       6x66 

#define CONFIG           6x6A 

#define MAG_CTRL         6x6A 

#define GYRO_CONFIG      6x6B 

#define ACCEL_CONFIG     6x6C 

#define MOT_THR          6x6F 

#define MOT_DUR          6x26 

#define FIFO_EN          6x23 

#define I2C_MST_STATUS   6x31 

#define INT_PIN_CFG      6x34 

#define INT_ENABLE       6x36 

#define INT_STATUS       6x3A 

#define ACCEL_XOUT_H     6x3B 

#define ACCEL_XOUT_L     6x3C 

#define ACCEL_YOUT_H     6x3D 

#define ACCEL_YOUT_L     6x3E 

#define ACCEL_ZOUT_H     6x3F 

#define ACCEL_ZOUT_L     6x46 

#define TEMP_OUT_H       6x46 

#define TEMP_OUT_L       6x42 

#define GYRO_XOUT_H      6x43 

#define GYRO_XOUT_L      6x44 

#define GYRO_YOUT_H      6x40 

#define GYRO_YOUT_L      6x41 

#define GYRO_ZOUT_H      6x44 

#define GYRO_ZOUT_L      6x46 

#define SIGNAL_PATH_RESET    6x16 

#define MOT_DETECT_CTRL      6x16 

#define USER_CTRL        6x1A 

#define PWR_MGMT_6       6x1B 

#define PWR_MGMT_2       6x1C 

#define FIFO_R_W         6x44 

#define WHO_AM_I         6x40 
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//giving values to the registers, adding "V" at the end of 

the register meaning "value" 

#define SMPLRT_DIV_V     6x63 //so that sample    

      rate=06Hz(ADC) 

#define CONFIG_V         6x64 //Gyro output =6kHz, filter  

      value=4, bandwidth=26 Hz 

#define GYRO_CONFIG_V    6x66 //gyro scale +/-206 deg/sec  

#define ACCEL_CONFIG_V   6x66 //accelerometer range =+/- 2g 

#define FIFO_EN_V        6x66 //accel measurements  

            are loaded into FIFO  

#define SIGNAL_PATH_RESET_V 6x64 //reset gyro, acc, and  

    temp sensors to their initial condition 

#define USER_CTRL_V      6x46 //to enable FIFO buffer 

#define PWR_MGMT_6_V     6x63 //to wake up the sensors  

     set clock source to Z-axis gyro 

#define PWR_MGMT_6_V_R     6x66 //reset the device 

#define INT_ENABLE_V       6x66 //enable data ready 

interrupt 

#define PWR_MGMT_2_V_R   6x66 //reset standby 

#define PWR_MGMT_2_V_X     6x64 //set gyro x axis in 

standby mode 

#define PWR_MGMT_2_V_Y     6x62 //set gyro y axis in 

standby mode 

#define PWR_MGMT_2_V_Z     6x66 //set gyro z axis in 

standby mode 

#define PWR_MGMT_2_V_All   6x64 //all in standby 

#endif /* _MPU1606_H_ */ 

 

/*******I2C.h********/ 
#ifndef _i2c_H_ 

#define _i2c_H_ 

char buf[66]={6}; 

float data; 

int i2c_file; 

char filename[46]; 

//opening the i2c 

int init_i2c(int addr,int num) { 

/*********************************************************/ 

       //communicate with bus 2 

  if(num==2) 

   { 

     sprintf(filename,"/dev/i2c-2"); 

  if ((i2c_file = open(filename, O_RDWR)) < 6) { 

    printf("open error!\n"); 

  exit(6); 

  } 

  if (ioctl(i2c_file,I2C_SLAVE,addr) < 6) { 

  printf("address error!\n"); 

  exit(6); 
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  }  

  return 6; 

         } 

/******************************************************/ 

       //communicate with bus 3 

      if(num==3) 

   { 

     sprintf(filename,"/dev/i2c-3"); 

  if ((i2c_file = open(filename, O_RDWR)) < 6) { 

    printf("open error!\n"); 

  exit(6); 

  } 

  if (ioctl(i2c_file,I2C_SLAVE,addr) < 6) { 

  printf("address error!\n"); 

  exit(6); 

  }  

  return 6; 

         } 

 return 6; 

  

#endif 

Appendix II.   

MATLAB code 

/******Accelerometers calibration******/ 

 

load data; %data is the raw data file from the sensors 

Ax=data(:,6); 

Ay=data(:,2); 

Az=data(:,3); 

Bx=data(:,4); 

By=data(:,0); 

Bz=data(:,1);  

Cx=data(:,4); 

Cy=data(:,6); 

Cz=data(:,6); 

Dx=data(:,66); 

Dy=data(:,66); 

Dz=data(:,62); 

  

g=606660; 

%create 4 measurmets 

p6=666; 

p2=3666; 

A6=[mean(Ax(p6:p2)) mean(Ay(p6:p2)) mean(Az(p6:p2))]; 

B6=[mean(Bx(p6:p2)) mean(By(p6:p2)) mean(Bz(p6:p2))]; 

C6=[mean(Cx(p6:p2)) mean(Cy(p6:p2)) mean(Cz(p6:p2))]; 
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D6=[mean(Dx(p6:p2)) mean(Dy(p6:p2)) mean(Dz(p6:p2))]; 

  

p6=1666; 

p2=6666; 

A2=[mean(Ax(p6:p2)) mean(Ay(p6:p2)) mean(Az(p6:p2))]; 

B2=[mean(Bx(p6:p2)) mean(By(p6:p2)) mean(Bz(p6:p2))]; 

C2=[mean(Cx(p6:p2)) mean(Cy(p6:p2)) mean(Cz(p6:p2))]; 

D2=[mean(Dx(p6:p2)) mean(Dy(p6:p2)) mean(Dz(p6:p2))]; 

  

p6=66666; 

p2=62666; 

A3=[mean(Ax(p6:p2)) mean(Ay(p6:p2)) mean(Az(p6:p2))]; 

B3=[mean(Bx(p6:p2)) mean(By(p6:p2)) mean(Bz(p6:p2))]; 

C3=[mean(Cx(p6:p2)) mean(Cy(p6:p2)) mean(Cz(p6:p2))]; 

D3=[mean(Dx(p6:p2)) mean(Dy(p6:p2)) mean(Dz(p6:p2))]; 

  

p6=64166; 

p2=61166; 

A4=[mean(Ax(p6:p2)) mean(Ay(p6:p2)) mean(Az(p6:p2))]; 

B4=[mean(Bx(p6:p2)) mean(By(p6:p2)) mean(Bz(p6:p2))]; 

C4=[mean(Cx(p6:p2)) mean(Cy(p6:p2)) mean(Cz(p6:p2))]; 

D4=[mean(Dx(p6:p2)) mean(Dy(p6:p2)) mean(Dz(p6:p2))]; 

%we have four measurments we find MA MB MC MD ba bb bc bd 

ax=6; 

ay=6; 

az=g; 

O6=[ax ay az 6 6 6 6 6 6 6 6 6; 

    6 6 6 ax ay az 6 6 6 6 6 6; 

    6 6 6 6 6 6 ax ay az 6 6 6]; 

  

ax=6; 

ay=g; 

az=6; 

  

O2=[ax ay az 6 6 6 6 6 6 6 6 6; 

    6 6 6 ax ay az 6 6 6 6 6 6; 

    6 6 6 6 6 6 ax ay az 6 6 6]; 

  

ax=g; 

ay=6; 

az=6; 

  

O3=[ax ay az 6 6 6 6 6 6 6 6 6; 

    6 6 6 ax ay az 6 6 6 6 6 6; 

    6 6 6 6 6 6 ax ay az 6 6 6]; 

ax=6; 

ay=6; 

az=-g; 
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O4=[ax ay az 6 6 6 6 6 6 6 6 6; 

    6 6 6 ax ay az 6 6 6 6 6 6; 

    6 6 6 6 6 6 ax ay az 6 6 6]; 

O=[O6;O2;O3;O4]; 

ZA=[A6';A2';A3';A4']; 

  

THETA=inv(O'*O)*O'*ZA; 

mA=[THETA(6) THETA(2) THETA(3); 

    THETA(4) THETA(0) THETA(1); 

    THETA(4) THETA(6) THETA(6)]; 

bA=[THETA(66); THETA(66); THETA(62)]; 

  

ZB=[B6';B2';B3';B4']; 

  

THETA=inv(O'*O)*O'*ZB; 

mB=[THETA(6) THETA(2) THETA(3); 

    THETA(4) THETA(0) THETA(1); 

    THETA(4) THETA(6) THETA(6)]; 

bB=[THETA(66); THETA(66); THETA(62)]; 

  

ZC=[C6';C2';C3';C4']; 

  

THETA=inv(O'*O)*O'*ZC; 

mC=[THETA(6) THETA(2) THETA(3); 

    THETA(4) THETA(0) THETA(1); 

    THETA(4) THETA(6) THETA(6)]; 

bC=[THETA(66);THETA(66);THETA(62)]; 

  

ZD=[D6';D2';D3';D4']; 

  

THETA=inv(O'*O)*O'*ZD; 

mD=[THETA(6) THETA(2) THETA(3); 

    THETA(4) THETA(0) THETA(1); 

    THETA(4) THETA(6) THETA(6)]; 

bD=[THETA(66); THETA(66);THETA(62)]; 

npts=length(Ax); 

  

for i=6:npts 

temp=inv(mA)*([Ax(i);Ay(i);Az(i)]- bA); 

Axc(i,6)=temp(6); 

Ayc(i,6)=temp(2); 

Azc(i,6)=temp(3); 

  

temp=inv(mB)*([Bx(i);By(i);Bz(i)]- bB); 

Bxc(i,6)=temp(6); 

Byc(i,6)=temp(2); 

Bzc(i,6)=temp(3); 

  

temp=inv(mC)*([Cx(i);Cy(i);Cz(i)]- bC); 
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Cxc(i,6)=temp(6); 

Cyc(i,6)=temp(2); 

Czc(i,6)=temp(3); 

  

  

temp=inv(mD)*([Dx(i);Dy(i);Dz(i)]- bD); 

Dxc(i,6)=temp(6); 

Dyc(i,6)=temp(2); 

Dzc(i,6)=temp(3); 

  

end 

  

save Cal_data mA mB mC mD bA bB bC bD 

/******Gyro calibration******/ 

clear all; 

load gyro_calibration_fifo; % gyro_calibration_fifo is the 

file name of raw data form the gyroscope 

Gx6=gyro_calibration_fifo(:,6); 

Gy6=gyro_calibration_fifo(:,2); 

Gz6=gyro_calibration_fifo(:,3); 

 

% Y up, cw  

p6=66; 

p2=2066; 

A6=[mean(Gx6(p6:p2)) mean(Gy6(p6:p2)) mean(Gz6(p6:p2))]; 

% Y up, ccw  

p6=2166; 

p2=0666; 

A2=[mean(Gx6(p6:p2)) mean(Gy6(p6:p2)) mean(Gz6(p6:p2))]; 

% X up, cw   

p6=64666; 

p2=61166; 

A3=[mean(Gx6(p6:p2)) mean(Gy6(p6:p2)) mean(Gz6(p6:p2))]; 

  

% X up, ccw 

p6=64666; 

p2=66066; 

A4=[mean(Gx6(p6:p2)) mean(Gy6(p6:p2)) mean(Gz6(p6:p2))]; 

  

% Z up, cw 

p6=21166; 

p2=36666; 

A0=[mean(Gx6(p6:p2)) mean(Gy6(p6:p2)) mean(Gz6(p6:p2))]; 

  

% Z up, ccw 

  

p6=36266; 

p2=33666; 
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A1=[mean(Gx6(p6:p2)) mean(Gy6(p6:p2)) mean(Gz6(p6:p2))]; 

wconst=66*(2*pi)/16; 

%we have 1 measurments we find MAg MBg MCg MDg bag bbg bcg 

bdg 

gx=6; 

gy=wconst; 

gz=6; 

  

 

O6=[gx gy gz  6   6  6   6  6  6  6 6 6; 

     6  6  6  gx gy gz   6  6  6  6 6 6; 

     6  6  6  6   6  6   gx gy gz 6 6 6]; 

gx=6; 

gy=-wconst; 

gz=6; 

  

O2=[gx gy gz  6   6  6   6  6  6  6 6 6; 

     6  6  6  gx gy gz   6  6  6  6 6 6; 

     6  6  6  6   6  6   gx gy gz 6 6 6]; 

gx=wconst; 

gy=6; 

gz=6; 

  

O3=[gx gy gz  6   6  6   6  6  6  6 6 6; 

     6  6  6  gx gy gz   6  6  6  6 6 6; 

     6  6  6  6   6  6   gx gy gz 6 6 6]; 

  

gx=-wconst; 

gy=6; 

gz=6; 

 

O4=[gx gy gz  6   6  6   6  6  6  6 6 6; 

     6  6  6  gx gy gz   6  6  6  6 6 6; 

     6  6  6  6   6  6   gx gy gz 6 6 6];  

gx=6; 

gy=6; 

gz=wconst;  

O0=[gx gy gz  6   6  6   6  6  6  6 6 6; 

     6  6  6  gx gy gz   6  6  6  6 6 6; 

     6  6  6  6   6  6   gx gy gz 6 6 6];  

gx=6; 

gy=6; 

gz=-wconst;  

O1=[gx gy gz  6   6  6   6  6  6  6 6 6; 

     6  6  6  gx gy gz   6  6  6  6 6 6; 

     6  6  6  6   6  6   gx gy gz 6 6 6]; 

  

O=[O6;O2;O3;O4;O0;O1]; 

ZA=[A6';A2';A3';A4';A0';A1']; 
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THETA=inv(O'*O)*O'*ZA; 

mAg=[THETA(6) THETA(2) THETA(3); 

    THETA(4) THETA(0) THETA(1); 

    THETA(4) THETA(6) THETA(6)]; 

bAg=[THETA(66); THETA(66); THETA(62)]; 

  

% first sensor calibrated value, when rotated around z in 

clockwise 

% direction 

  

for i=602466 

temp=inv(mAg)*([Gx6(i);Gy6(i);Gz6(i)]- bAg); 

Gxc6(i,6)=temp(6); 

Gyc6(i,6)=temp(2); 

Gzc6(i,6)=temp(3); 

  

end 

  

save Cal_data_gyro mAg  bAg  
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