
Center for sensor systems (ZESS)

North finding system using low-cost MEMS

inertial measurement unit

By

Hiwa Faiq Gul Muhammad

A thesis

submitted in partial fulfillment

of the requirements for the degree of

master of science in

mechatronics

at

the University of Siegen

September 2102

 i

North finding system using low-cost MEMS inertial

measurement unit

Thesis Approved:

 Supervisors

Prof. Dr. Otmar Loffeld

MSc. Ezzaldeen Edwan

 ii

Acknowledgements

 I wish to express my sincere appreciation to my supervisors Prof.

Dr.Otmar Loffeld and MSc.Ezzaldeen Edwan for their advice, guidance,

encouragement and friendly supervision. My sincere appreciation to Mr.

Wolf Twelsiek and Mr. Rolf Wurmbach for their support and supplying me

all the hardware components needed in this project. Special thanks to my

Friend Fernando Suárez Lainez for his kind help and support during the

implementation phase of my thesis. Thanks to the DAAD scholarship

program and MOHESR for funding me during my master program.

I would also like to give my special thanks to my family for their continuous

support and encouragement during this work.

 iii

Abstract

 Heading determination is said to be one of the important requirements in

navigation systems and can be performed by different methods. Advances in

Global Positioning System (GPS) technology, which is easy and low-cost,

make GPS more preferable and alternative for the navigation systems. The

problem with navigation systems that utilizes GPS only for heading

calculation is that the GPS signals are not available in indoors and in

underwater operational environment. Another way to find heading is by

using a digital magnetic compass (DMC). These devices are compact and

low-cost instruments that are capable of achieving an accuracy of

milidgrees. However, heading accuracy of such devices is highly dependent

on the working environment and can be easily degraded by a ferrous

material or by electromagnetic interference.

 This thesis examines the determination of the heading using low-cost

MEMS inertial measurement sensors Gyroscopes and accelerometers. These

devices can overcome the problems like degradation by ferrous material and

electromagnetic field and can be used in indoor navigation since they are

working on inertial principle. This method is based on the detection of earth

rotation which is very small as compared to sensor range, so detecting such a

weak signal requires precise error analysis and characterization. Tests and

results of the inertial sensors are implemented with different approaches.

The results show that the MEMS sensors that have been used in this work

can be used for heading determination with a certain value of error.

 iv

Table of contents

1 Introduction

0.0 Thesis objective..

0.2 Literature survey...

0.1 Achievements of this thesis...

0.1 Organization of thesis...

2 Inertial sensors, error characterization, and calibration

2.0 MEMS inertial sensors...

2.0.0 Accelerometers...

2.0.2 Gyroscopes...

2.2 Error characterization...

2.2.0 Bias..

2.2.2 Scale factor..

2.2.1 Misalignment...

2.2.1 Non-linearity...

2.2.2 Allan variance and gyroscope error characterization.......

2.1 Calibration of inertial sensors...

2.1.0 Accelerometer calibrations..

2.1.2 Gyroscope calibrations..

3 Experimental setup

1.0 Hardware..

1.0.0 BeagleBoard as single-board computer............................

1.0.2 MPU-0121 sensors evaluation board................................

1.0.1 Circuit diagram...

1.2 Software environment..

1.2.0 Operating system..

1.2.2 Real time issues..

4 Experiments and results

1.0 Heading calculation by Maytagging technique.........................

1.2 Gyro-bias compensation by distributed accelerometer triad.....

0

0

2

2

2

1

1

1

2

0

0

7

7

7

7

01

01

01

20

20

20

11

11

11

11

17

 11

11

10

20

20

27

 v

5 Conclusion and future work

2.0 Conclusion...

2.2 Future work...

Appendix I. C- code...

Appendix II. MATLAB code...

List of references...

21

07

72

 0

1 Introduction

1.1 Thesis objective

 The fundamental purpose of this thesis is to find north direction using

low-cost MEMS gyroscope by different proposed methods. Error

characterization associated with a MEMS gyroscope, most importantly bias

instability, has also been studied. Bias instability decides whether the

selected sensor can be used to accomplish required task or not.

 Inertial sensor calibration is performed for both gyroscopes and

accelerometers in order to find their scale factor, misalignment, static bias.

The sensor calibration is also useful to find the rotation matrices to convert

the sensor values from the sensors coordinate system to a unified coordinate

system, in our case a triad frame.

1.2 Literature survey

 Heading calculation using low-cost IMU by the proposed methods

requires error identification and compensation. A detailed error

identification and analysis using Allan variance has been developed for this

purpose [Haiying Hou], it defines and classifies the common errors found

in gyroscopes and rate gyros: bias, scale factor, misalignment, and noise. A

procedure has also been developed to obtain the statistics of each of these

error sources. Development of a MEMS gyroscope for north finding

applications is proposed using tuning fork type MEMS gyro [Burdess].The

Angle Random Walk (ARW) and root Allan variance has been measured

and found that it satisfies the requirement for gyro compassing. Then the

long-term bias drift has been compensated for using Carouseling

technique, for which the Earth rotation could be found successfully.

A system for finding true north with rotating linear accelerometers utilizing

the Coriolis Effect to detect the horizontal component of the earth's spin rate

requires expensive and precise accelerometer [Guofu]. Beside mathematical

modeling, a signal processing algorithm to deal with the accelerometer

output is presented.

Direct measurement of the Earth's rotation using Low-cost MEMS rate

gyroscope is difficult to achieve due to considerable parameter variations of

the current state-of-art sensors of this type [Rumen]. The external factors

that affect the sensor measurement are modeled and compensated

 2

mechanically by changing the sensor's orientation. Here the drift in the

gyroscope is compensated for and the gravity effect on the gyro is also

eliminated resulting in more accurate estimate of the Earth's rotation.

1.3 Achievements of this thesis

 The following are the achievements of the thesis.

 MEMS inertial sensors error characterization

 Gyro and accelerometer calibrations

 Heading calculation by Maytagging method

 Gyro-bias compensation using distributed accelerometer triad

1.4 Organization of thesis

Chapter 0 presents the thesis objectives, achievements, literature survey, and

Organization of thesis.

Chapter 2 reviews theory and background of MEMS gyroscope and

accelerometer. Error characterization is also presented using Allan variance

method. Finally the sensor calibration is described for both gyro and

accelerometer.

Chapter 1 provides the hardware specifications for both of development

board and the sensors that are used for system realization. The circuit that

has been used for data collection from the sensors into the development

board has been presented and the software that works behind the hardware is

also illustrated.

Chapter 1 includes the analysis and the experimental results.

Chapter 2 presents the thesis conclusion and provides the

 recommendation of future research.

 1

2 Inertial sensors, error characterization, and calibration

2.0 MEMS inertial sensors

 Micro-Electromechanical Systems, or MEMS, can be used to produce

complex structures, devices and systems. MEMS refer to devices that have

characteristic length of less than 0 mm but more than 0 micron, that combine

electrical and mechanical components and which are fabricated using

integrated circuit batch-processing technologies.

 Most sensors are designed to convert a physical phenomenon into a

measurable signal. For inertial sensors, this physical phenomenon is an

inertial force. Often this force is converted into a linearly scaled voltage

output with a specific sensitivity.

 In mechanical sensors, the active structural elements convert a

mechanical external input signal (force, pressure, acceleration, etc) into an

electrical signal output (voltage, current, or frequency) applying an external

force to the active part of the sensor. Active parts usually are elements such

as suspended beams or membranes [02].

 In electromechanical conversion, the mechanical quantity is transformed

into an electrical quantity such as capacitance, resistance or charge. Often,

the electrical signal needs further electrical conversion into an output

voltage, frequency or current. To optimize all the transfer functions, detailed

electrical and mechanical modeling is required.

 MEMS sensors can suffer in overall system sensitivity. The tradeoff

between system size, cost and performance is often directly coupled. It

should be taken into account that the properties of thin-film materials are

often significantly different from their bulk or macro-scale form.

Assumption of homogeneity, commonly used with accuracy for bulk

materials, becomes unreliable when used to model devices that have

dimensions on the same scale as individual grains and other microscopic

fluctuations, affecting the properties of the material. Thus, local changes in

grain size and other characteristics could significantly alter the performance

of MEMS produced devices. Many different inertial microsensors have been

made (e.g. single- and multi-axis accelerometers and gyroscopes) using

either piezoresistors or capacitive position detection [02].

 1

2.0.0 Accelerometers

 A linear accelerometer is an inertial sensor that measures the component

of translational acceleration along its input axis. An output signal is

produced from the motion of a proof mass relative to the case, or from the

force or torque required to restore the proof mass to a null position relative

to the case [01].

 MEMS accelerometers can be classified into different categories

dependent upon following three parameters: the position detection of the

seismic mass (piezoresistive signal pick-off sensors, capacitive signal pick-

off sensors, piezoelectric sensing element sensors and resonant element

sensors), the operation mode (open loop operation and closed loop

operation), and the fabrication process of the sensing elements[02].

 An open-loop silicon micromechanical accelerometer can sense proof-

mass displacement piezoelectrically, piezoresistively, or electrostatically.

Piezoelectric sensing of the strain in the proof-mass support restricts

measurement to AC (above about 2 Hz) rather than DC inputs because of

leakage of the piezoelectric generated charge [01], [01].

 Generally, the proof mass is suspended by compliant beams anchored to a

fixed frame. The proof mass has a mass of M, the suspension beams have an

effective spring constant of K, and there is a damping factor D affecting the

dynamic movement of the mass, see Fig. 2.0. External acceleration displaces

the support frame relative to the proof mass, which in turn changes the

internal stress in the suspension spring. Both the relative displacement and

the suspension-beam stress can be used as a measure of the external

acceleration [02].

Figure 2.0: General accelerometer structure and its mechanical lumped model [after 07]

 2

2.0.2 Gyroscopes

 A gyroscope is an inertial sensor that measures angular rotation about its

input axis with respect to inertial space. The sensing of such motion could

utilize the angular momentum of a spinning rotor, the Coriolis effect on a

vibrating mass, or the Sagnac effect
0
 on counter-propagating light beams in

a ring laser or an optical fiber-coil[01].

 Coriolis acceleration, named after Gaspard-Gustave Coriolis (0772-

0111), is a fictitious acceleration (and not a real force, since it is based on

motion relative to a non-inertial reference frame, which is rotating) that

arises in a rotation reference frame and is proportional to the rate of rotation.

To understand the Coriolis effect, imagine a particle traveling in space with

a velocity vector v. An observer sitting on the x-axis of the xyz coordinate

system, shown in Fig. 2.2, is watching this particle. If the coordinate system

along with the observer starts rotating around the z-axis with an angular

velocity Ω, the observer thinks that the particle is changing its trajectory

towards the x-axis with an acceleration equal to 2V × Ω. Although no real

force has been exerted on the particle, to an observer attached to the rotating

reference frame an apparent force has resulted that is directly proportional to

the rate of rotation. This effect is the basic operating principle underlying all

vibratory structure gyroscopes [02].

Figure 2.2: The Coriolis effect [after 07]

0
 The Sagnac effect (also called Sagnac Interference) is a phenomenon encountered in

interferometry that is elicited by rotation.

 0

2.2 Error characterization

 There are various sources of errors that affect the performance of inertial

sensors. Apart of noise in the system, the most commonly present errors are

biases, scale factors, non-linearities and axes misalignment. These errors are

briefly discussed in the following subsections.

2.2.0 Bias

 The bias of MEMS sensors is the average of output signal that has no

relation with the input quantity sensed by the sensors. That is even though

there is no force acting onto the sensors; the sensors produce a non-zero

output [00].

Figure 2.1: The relationship between the output voltage of the accelerometer

(gyroscope)and the measured force (angular rate) is modeled as a linear function

describing the scaling and bias of the sensors [after 00].

 The relationship between the output voltage and the physical quantity

acting along the sensor sensitive axes is given by the manufactures data

sheet, but the true scaling may vary from sensor to sensor. Bias can be split

into a static part called bias offset (refers to the offset in the measurement), a

random part called bias drift and a temperature varying part. Both the bias

offset and the temperature varying part are deterministic in nature and

 7

therefore can be determined by calibration. The bias drift, on the other hand,

are random in nature and should be modeled as a stochastic process.

2.2.2 Scale factor

 Scale factor is the ratio of change between the measured output and the

change in sense input. It is generally evaluated as a slope of the straight line

that can be fit by least square method to input-output data and is typically

expressed as a percentage or ppm (parts per million).like the case of bias,

scale factor can be divided into three parts, a static part, a random drift part

and a temperature varying part [00].

2.2.1 Misalignment

 Axes misalignment is the error from the imperfection of mounting the

sensors. It often results in a non-orthogonality of the axes. As a result, each

axis is affected by measurements of the other two axes in the body frame.

Since axes misalignments are a manufacturing imperfection can therefore

easily be detect and compensated by calibration [00].

2.2.1 Non-linearity

 Non-linearity is the deviation of the sensor output from the input-output

derived from a least square method over the operating range. The deviation

is expressed as a percentage of the full-scale output.

2.2.2 Allan variance and gyroscope error characterization

 Allan variance was developed by David W. Allan in 0700 ("Statistic of

Atomic Frequency Standards"). The Allan variance method of data analysis

is a time domain analysis technique originally developed to study the

frequency stability of oscillators. In general, the method can be applied to

analyze the noise characteristics of any precision measurement instrument.

The attractiveness of this method is that the Allan variance, when plotted in

logarithmic scales, can discriminate different contributing error sources by

simply examining the varying slopes on the Allan plot. Because of the

analogies, the Allan variance method analysis has been adapted to random

drift characterization of inertial sensors (IEEE Sdt.722-0777).

 1

Methodology

 Assume that there are N consecutive data points, each having a sample time

of τ1, then

 Form groups of n consecutive data points τ1, 2 τ1,.. n τ1, with

 0 ≤ n < N/2, see Fig.2.1

 Each group is called cluster. Associated with each cluster is a time τ,

 which is equal to n τ1.

 Obtain averages of the sum of the data points contained in each cluster

 over the length of that cluster

Figure 2.1: Scheme of data structure used in Allan variance algorithm [after 00]

Consequently, the Allan variance
2
 is defined as [7]:

  
 

    1

2
2 1

2 1 i ii
AVAR y y

m
  


 


 (2.0)

 Where AVAR(τ) is the Allan Variance as a function of the averaging time,

τ; yi is the average value of the measurement in bin i; and m is the total

number of bins.

 A log-log plot of the square root of the Allan variance, AVAR(τ), versus τ

provides a means of identifying and quantifying various noise terms that

exist in the inertial sensor data.

Noise source analysis

 In general, any number of random noise components may be present in the

data depending on the type of device and the environment in which the data

is obtained. If the noise sources are statically independent, then the

computed Allan variance is sum of the squares of each error type [00].

 The following subsections will show the most affective type of noise

which affects the output data of the sensors.

2
 Frequently the term Allan variance is also used to refer to its square root, σ(τ)

 7

Bias instability

 Bias Instability is also known as " f1 noise" or "flicker noise". This is a low

frequency bias fluctuation in the measured rate data. The origin of this noise

is the electronics, or other components susceptible to random flickering.

Because of its low-frequency nature, it shows as the bias fluctuations in the

data.

Bias Instability is a fundamental measure of the 'goodness' of a gyro. It is

defined as the minimum point on the Allan Variance curve as shown in

Fig.2.2, usually measured in °/hr. It represents the best bias stability that

could be achieved for a given gyro, assuming that bias averaging takes place

at the interval defined at the Allan Variance minimum.

Combined effects of all noise sources

 In general, any number of random processes can be present in the data.

Thus, a typical Allan variance plot looks like the one shown in the Fig. 2.2.

Experience shows that in most cases, different terms appear in different

regions of  . This allows easy identification of various random processes

that exist in the data. If it can be assumed that the existing random processes

are all statistically independent then it can be shown that the Allan variance

at any given  is the sum of Allan variances due to the individual random

processes at the same  [00].

Figure 2.2:)( Sample plot of square root of Allan variance analysis results (after

IEEE Std.722-0777).

 01

 2.1 Calibration of inertial sensors

 Calibration is the process of comparing instrument outputs with known

reference information and determining coefficients that force the output to

agree with the reference information over a range of output values.

Calibration is necessary, because the sensor sensitivity axes usually do not

coincide exactly with the body frame axes. This is due to manufacturing

imperfections when soldering the sensors onto the board as well as

imperfections of the sensors themselves. This may also include non-

orthogonality of the sensitivity axes in addition to simple misalignment,

especially if a cluster of one-axis sensors is used. As actual scale and bias

values usually differ from the nominal values, they have to be determined,

too. The calibration process requires a mechanical platform to precisely

manipulate the IMU. A minimum of one actuated degree of freedom is

needed to calibrate the gyroscopes. However such a system requires

extensive and tedious user manipulation, as the IMU has to be repositioned

several times. Thus, it is desirable to have three degrees of freedom platform

able to rotate the IMU around arbitrary axes in space, minimizing the

necessary user interactions.

Another purpose of calibration in this work was to find transformation

matrix (as well as misalignment and scale factors) to transform data from the

sensor coordinates to a unified coordinate called triad coordinate, since there

is more than one sensor and the orientation of each is different from the

others. The calibrations stated in the next sections is performed for the last

task of this thesis (section 1.1), because we have also performed the

calibration for (section 1.0) but it we are not going to describe it since it is

similar to the one used in section (1.1).

 2.1.0 Accelerometer calibrations

 Accelerometers suffer from several sources of errors, namely

misalignment, scale factor, bias, and noise. We can calibrate for three types

of errors: scale factor, misalignment, and the three bias parameters in a

single calibration procedure of each sensor. A 7-element sensitivity matrix

can be found, whose diagonal elements contain misalignment parameters.

Likewise, we find the three bias elements [0].

In matrix form, the accelerometer triad output is related to the specific force

as [0]:

 00

m m mZ a b vxx xy xzx x ax ax

Z m m m a b vy yx yy yz y ay ay

Z m m m a b vz zx zy zz z az az

  

        
        
        
                

There are many methods to solve for m and b elements. Following a similar

approach to the one given in, we rearrange equation (2.2) into the following

form [0]:

 z O va 

, 1

mxx

m mxy

mxz



 
 
 
  

 , 2

myx

m myy

myz



 
 
 
 
 

 , 3

mzx

m mzy

mzz



 
 
 
  

T
v v v va ax ay az

T
b b b ba ax ay az





  

  

The observation matrix for every measurement is given by [0]

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

a a ax y z

O a a ax y z

a a ax y z



 
 
 
 
 

We stack N observation matrices from N observations to form the total

Measurement vector and the total observation matrix shown next [0]:

11 1

.. .

.. .

vz O a

NN N
O vz a

 

    
    
    
    
    

    

 ,
t t t

z O v a 

To have an observable system, we need a minimum of four measurements

with proper values of the specific force values. To extract the m and b

elements, we use least square estimation [0]

(2.2)

(2.1)

1

2

3

m

m

m

ba

 

 
 
 
 
   (2.1)

(2.2)

(2.0)

 02

  
1

ˆ ttT t tT
O O O z




The implementation of these equations in MATLAB is shown in appendix II

The four measurements have been taken with a different frame orientation

with data logging for approximately 12 seconds for each position. First the

Z-axis has been pointed upward (Fig. 2.0) and then Y-axis pointed upward

(Fig. 2.7) and then X-axis (Fig. 2.1) and finally Z-axis pointed downward

(Fig. 2.7).

So called (spirit level or bubble level) shown in the Fig.2.0 is used to obtain

a horizontal alignment of the frame (zero degree with the local horizontal

plane) to reduce errors (false reading) in the accelerometers while we are

performing calibration.

(2.7)

Z-axis

X-axis

Y-axis

Figure 2.0: Z-axis upward position

Sensor B
Sensor A

Sensor D

Sensor C
Spirit level

 01

Figure 2.7: Y-axis upward position

Y-axis

X-axis
Z-axis

Figure 2.1: X-axis upward position

X-axis

Z-axis
Y-axis

 01

 The sensors have been labeled so that it will be easier to perform

calibration and to recognize output collected data. As shown in figures

above, the accelerometer sensitive axis need to be pointed either upward or

downward so that we read the earth's gravity vector plus some bias on one

axis, and on the others only bias. It is essential that this experiment is

performed on a flat surface so that the gravity vector will not affect the other

two axes and they should be held parallel to the local horizontal plane.

As shown in figures bellow, each plot represents accelerometer's output and

they are different from each other, since the orientation of the sensors are

different and that gives different values for each sensor's axis. For that

purpose we need to calibrate the sensors and represent them in a unified

coordinate for all of them, which in this case is the triad's axes.

Figure 2.7: Z-axis downward position

Z-axis

X-axis Y-axis

 02

Figure 2.01: Sensor triad A's output raw data

Figure 2.00: Sensor triad B's output raw

data

 00

Figure 2.02: Sensor triad C's output raw

data

Figure 2.01: Sensor triad D's output

raw data

 07

Four measurements were collected and processed in MATLAB program as

in [0] and are used to find the misalignment, scale factor, and bias. By this

program one can also find the direction cosine matrix to transform from

sensor's coordinate frame to the triad's frame.

Shown in table 2.0 is the summary of the accelerometers calibration, after

this calibration, any data coming out from the accelerometers will be in m/s
2
.

Sensor triad A:

Misalignment and scale factor Bias

-01.11 -1.97.5 -11.017 120.02

1.22.4 -02.717 21.17 202.10

-20.222 -2.2212 196..4 02.110

Sensor triad B:

Misalignment and scale factor Bias

1.99.. -27.710 -2.7000 720.10

22.007 1..9.7 07.001 210.01

1.7021 1.0110 1.72.3 -00.77

Sensor triad C:

Misalignment and scale factor Bias

-7.1020 -1.76.1 -11.717 212.72

-1.2227 -01.177 1.97.2 101.10

-1912.3 1.1110 -7.2717 -170.12

Sensor triad D:

Misalignment and scale factor Bias

-0.0111 -1.26.7 -0.2002 270.01

1.99.1 -1.1201 1.0717 111.11

-2.112 01.112 1913.4 -101.1

Table 2.0: Accelerometer calibration parameters

Colored in green and bolded, are the scale factor of the sensors for each axis,

and the fourth column is the bias colored in red and the rest are the

misalignments. From the above data, it is obvious that the sensor triads have

different alignment.

x

y

z

x

y

z

x

y

z

x

y

z

 01

 2.1.2 Gyroscope calibrations

 Gyro calibration procedure is similar to the accelerometer calibration, but

instead of changing the orientation of the sensor, the gyro is mounted on a

precise rotating turntable which is controlled by a computer, and rotates at

the precisely known angular rate.

The equations used for gyro calibration is similar to the one used for

accelerometers, but instead of an in equation 2.2 as the earth's gravity to the

sensors, we rotate the turn table with a specified turn rate ωn. The detail of

the program in MATLAB is shown in Appendix II.

Shown bellow is the setup used to perform the calibration of the Gyroscope.

As we can see, the triad is mounted on a leveled turntable and rotated at 01

RPM clockwise and counterclockwise, so we will get six measurements

since we have 1 axes with 1 rotations.

Figure 2.01: rotation around X-axis

CW
CCW

 07

Figure 2.02: rotation around Y-axis

Figure 2.00: rotation around Z-axis

CW
CCW

CW
CCW

 21

The output of the gyroscope after performing the above rotations is shown in

Fig. 2.07

Shown in table 2.2 is the summary of the gyro calibration

Misalignment and scale factor Bias

71.112 9569 -7.2020 000.122

-9519.5 2.1 -21.007 70.022

001.77 72.017 -9493.9 -001.001

Table 2.2: Gyro calibration Parameters

 Colored in green and bolded, are the scale factor of the gyroscope for each

axis, and the fourth column is the bias colored in red and the rest are the

misalignments.

After doing this calibration, any value read from gyroscope will be in rad/s.

Figure 2.07: Gyro triad A's output

raw data

x

y

z

 20

3 Experimental setup

 1.0 Hardware

 The hardware components used in this work are a Laptop with Linux

Ubuntu 00.11 operating system for sensor data analysis and BeagleBoard

for data logging from IMUs , MPU0121-ev 7 DOF inertial measurement

units from Invensense. Two logic level converters are used since the logic

voltage from BeagleBoard side is 0.1V and from the IMU side is 1.1V.

 The following sections provide the setup details and the characteristics of

BeagleBoard and summarize the IMU features and the connection diagram

between them.

1.0.0 BeagleBoard as single-board computer

 The BeagleBoard (Fig.1.0) is a powerful single-board computer

developed by Texas Instruments, featuring their OMAP1211 system on a

chip. This OMAP1211 builds in an ARM Cortex-A1 at 721 MHz CPU

clock. The board is supported by a large community and is designed with

open source development in mind. It measures about 1x1" and has all the

functionality of a basic computer. It has many expansion options, the

BeagleBoard can be used as the backbone for a large variety of projects [2].

The OMAP1211 includes an HD-video capable TMS121C01x+ DSP for

accelerated video and audio decoding, and an OpenGL ES 2.1 capable

2D/1D GPU. Video outputs can be provided by the on-board S-video or

DVI-D (HDMI connector) outputs. Several communication issues are solved

by the OMAP through I2C, SPI, UART communication which are available

in the expansion header of the board allowing a high flexibility to

communicate with a large variety of sensors [2].

The board also includes an MMC+/SD/SDIO interface, USB 2.1, 1.2mm

stereo audio in/out connectors, RS212 and JTAG ports. It can consume up to

2W of power, which can be provided via USB or an external 2V source, via

the on-board barrel jack. Because of the very low power consumption, the

board requires no additional cooling [2].

 22

BeagleBoard requires several connections and configurations. The following

connections are needed to accomplish the first board's start up.

Power Supply

Powering up the BeagleBoard can be achieved in two ways: the first one is

by connecting an USB OTG (on-the-go) cable which will deliver the power

to switch on the board. The second way is to connect an external power

supply adapter of 2V to the jack barrel connector which is available for such

purpose. The last option is recommended because at the moment to run for

the first time, the system requires a bit of extra power and while supplying

the board through USB could lead in a problem due to USB OTG cannot

deliver enough current for this operation resulting in error or hanging issues

when trying to boot up the system [1].

Serial Connection

Next, it will be shown how to communicate with the BeagleBoard which is

accomplished by Ethernet over USB, but the first communication will be

realized serially since the Ethernet needs some settings after the board is

initialized for the first time.

To connect the board using RS212, a serial cable is needed to plug it into the

01 pin-header of the board. This cable is known as DB7-M to IDC-01

Figure 1.0: Beagle Board's hardware [after wikipedia.org/wiki/BeagleBoard].

 21

SERIAL PORT (AT-EVEREX) shown in Fig.1.2. In Fig.1.1, a null-modem

cable can be seen which is needed as well for connecting to the host PC.

 To start sending data from the board to the PC, a terminal program is

needed to display the data out. For this purpose the well-known software

Putty is recommended. Fig 1.1 and Fig 1.2 clarify the settings using serial

communication for BeagleBoard in Putty.

Figure 1.2: DB7-M to IDC-01 serial converter

(after www.ocean-server.com)

 Figure 1.1: Null modem cable (after www.ethersol.com)

http://www.ocean-server.com/
http://www.ethersol.com/

 21

Figure 1.1: Saving Putty session

Figure 1.2: Serial configuration for BeagleBoard

 22

SD Memory Card Configuration

It is necessary to use a MMC SD memory card to run the operative system.

The memory card needs a specific formatting for proper operation. This

section shows how to create a dual partition card, booting from a FAT

partition that can be read by the OMAP1 ROM boot loader and

Linux/Windows utilizing an EXT1 partition for Linux root file system.

SD device detection

We plug the SD Card into the SD Card Reader and then plug the SD Card

Reader into your system. After doing that, we do the following to determine

which device it is on your system. This example uses 2GB SD card [1].

dmesg | tail

...

[0121.202021] sd 7:1:1:1: [sdc] Mode Sense: 1b 11 11 11

[0121.202021] sd 7:1:1:1: [sdc] Assuming drive cache: write through

[0121.202027] sdc: sdc0

[0121.201177] sd 7:1:1:1: [sdc] Attached SCSI removable disk

[0121.201012] sd 7:1:1:1: Attached scsi generic sg2 type 1

...

In this case, it shows up as /dev/sdc.

Checking if the automounter has mounted the SD card

Note there may be more than one partition (only one is shown in the

example below).

df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sdc0 111M 71 M 117 M 212 /media/disks

Note the "Mounted on" field in the above (in this case /media/disk) and use

that name in the umount commands below.

Unmounting the SD card

 umount /media/disk

Starting fdisk

We choose the whole device (/dev/sdc), not a single partition (/dev/sdc0).

 20

 sudo fdisk /dev/sdc

Print the partition record

In the following steps the commands between [] are the user inputs.

Command (m for help): [p]

Disk /dev/sdc: 2120 MB, 2120021221 bytes

222 heads, 01 sectors/track, 212 cylinders

Units = cylinders of 00102 * 202 = 1222211 bytes

Device Boot Start End Blocks Id System

/dev/sdc0 * 0 210 07712111 c W72 FAT12

(LBA)

Partition 0 has different physical/logical endings:

phys=(211, 221, 01) logical=(212, 211, 07)

So we know the starting point. Make sure to write down the number of bytes

on the card (in this example, 2120021221 bytes).

Deleting existing partitions

We delete any previous partitions.

Command (m for help): [d]

Selected partition 0

We repeat this step in case there are more partitions.

Set the memory card's geometry

If the print out of the partition record does not show 222 heads,

01 sectors/track, then do the following additional steps to set the proper

geometry of the card.

 Go into expert mode:

 Command (m for help): [x]

 Set the number of heads to 222:

 Expert Command (m for help): [h]

 Number of heads (0-220, default xxx): [222]

 27

 Set the number of sectors to 01:

 Expert Command (m for help): [s]

 Number of sectors (0-01, default xxx): [01]

 Now calculate the number of cylinders of the SD card:

512*63*255

cardSDtheonbytesofnumber
Cylinders 

So for this SD card model, the number of cylinders to use is 212 (i.e.

truncate, don't round).

cylinders9.245
512*63*255

2021654528


 Set the number of cylinders to the number calculated:

 Expert Command (m for help): [c]

 Number of cylinders (0-220, default xxx): [212]

 Return to normal mode:

 Expert Command (m for help): [r]

Checking the modifications

We print the partition record to check the work done so far.

Command (m for help): [p]

Disk /dev/sdc: 2120 MB, 2120021221 bytes

222 heads, 01 sectors/track, 212 cylinders

Units = cylinders of 00102 * 202 = 1222211 bytes

Device Boot Start End Blocks Id System

Creating boot partition

We create the FAT12 partition to provide booting for the board.

Command (m for help): [n]

Command action

e extended

p primary partition (0-1)

 21

[p]

Partition number (0-1): [0]

First cylinder (0-212, default 0): [(press Enter)]

Using default value 0

Last cylinder or +size or +sizeM or +sizeK (0-212, default 212): [121]

Command (m for help): [t]

Selected partition 0

Hex code (type L to list codes): [c]

Changed system type of partition 0 to c (W72 FAT12 (LBA))

Important: We have to mark it as bootable.

Command (m for help): [a]

Partition number (0-1): [0]

Creating Linux partition

Create the ext1 partition which will contain the root file system.

Command (m for help): [n]

Command action

e extended

p primary partition (0-1)

[p]

Partition number (0-1): [2]

First cylinder (22-212, default 22): [(press Enter)]

Using default value 22

Last cylinder or +size or +sizeM or +sizeK (22-212, default 212): [(press

Enter)]

Using default value 212

We use the print command to check the work done so far.

Command (m for help): [p]

Disk /dev/sdc: 2120 MB, 2120021221 bytes

222 heads, 01 sectors/track, 212 cylinders

Units = cylinders of 00102 * 202 = 1222211 bytes

Device Boot Start End Blocks Id System

/dev/sdc0 * 0 20 117020 c W72 FAT12 (LBA)

/dev/sdc2 22 212 0221112 11 Linux

 27

Saving settings

We save the new partition record on the SD Card. This is an important step

because all the work up to now is temporary.

Command (m for help): [w]

The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: Re-reading the partition table failed with error 00: Device or

resource busy.

The kernel still uses the old table.

The new table will be used at the next reboot.

partitions, please see the fdisk manual page for additional information.

Syncing disks.

Formatting partitions

The two partitions are given the volume names LABEL1 and LABEL2 by

these commands. These volume labels can be substituted.

 sudo mkfs.msdos -F 12 /dev/sdc0 -n LABEL0

 mkfs.msdos 2.00 (02 Mar 2102)

 sudo mkfs.ext1 -L LABEL2 /dev/sdc2

mke2fs 0.11-WIP (01-Mar-2102)

Filesystem label=

OS type: Linux

Block size=1170 (log=2)

Fragment size=1170 (log=2)

072172 inodes, 117270 blocks

07171 blocks (2.112) reserved for the super user

First data block=1

Maximum filesystem blocks=112021011

02 block groups

12701 blocks per group, 12701 fragments per group

00220 inodes per group

Superblock backups stored on blocks:

12701, 71111, 001111, 227170, 271702

Writing inode tables: done

Creating journal (1072 blocks): done

 11

Writing superblocks and filesystem accounting information.

Now the SD memory card is configured properly in order to copy the boot

files and the file system which will boot up the operative system on the

BeagleBoard.

1.0.2 MPU-0121 sensors evaluation board

The MPU-0111/MPU-0121™ family of parts are the world’s first and only

0-axis Motion Tracking devices designed for the low power, low cost, and

high performance requirements of smartphones, tablets and wearable sensors

[1].

The MPU-0121 incorporates InvenSense’s MotionFusion™ and run-time

calibration firmware that enables manufacturers to eliminate the costly and

complex selection, qualification, and system level integration of discrete

devices in motion-enabled products, and guarantees that sensor fusion

algorithms and calibration procedures deliver optimal performance for

consumers [1].

Motion interface is rapidly becoming a key function in many consumer

electronics devices including smartphones, tablets, gaming consoles, and

smart-TVs as it provides an intuitive way for consumers to interact with

electronic devices by tracking motion in free space and delivering these

motions as input commands.

 According to [1], The MPU-0111/0121 devices combine a 1-axis

gyroscope and a 1-axis accelerometer on the same silicon die together with

an onboard Digital Motion Processor™ (DMP™) capable of processing

complex 7-axis Motion Fusion algorithms. The parts' integrated 7-axis

Motion Fusion algorithms access external magnetometers or other sensors

through an auxiliary master I C bus, allowing the devices to gather a full set

of sensor data without intervention from the system processor.

The InvenSense MotionApps™ Platform that comes with the MPU-0121

abstracts motion-based complexities, offloads sensor management from the

operating system and provides a structured set of APIs for application

development.

For precision tracking of both fast and slow motions, the parts feature a user-

programmable gyro full-scale range of 0221, 0211, 00111, and 02111±/sec

(dps) and a user-programmable accelerometer full-scale range of 02g, 01g,

01g, and 000g [1].

 10

Table bellow shows the MPU0121 main characteristics

MEMS Gyro MPU0121 MEMS Accelerometer MPU0121

Gyroscope range: 0221 º/s, 0211 º/s, 00111

º/s, 02111

Accelerometer range: 02g, 01 g,01g, 000g

 Gyroscope ADC resolution: 00-bit Accelerometer ADC resolution: 00-bit

 Scalable measurement range:

010602.2612.1600.1 LSB/(º/s)

Scalable measurement range: 00111,

1072,117062111 LSB/g

Total RMS Noise: DLPFCFG=2 (011Hz)

1.12 º/s-rms Rate Noise Spectral Density At

01Hz 1.112 º/s/√Hz

Power spectral density @01Hz = μ111g/√Hz

Initial ZRO Tolerance at 22±C : 021 º/s Zero G output : X & Y axis = 021 mg,

 Z axis= 011mg

Table 1.0: MPU 0121 gyro & accelerometer characteristics [after 1]

These two sensors along with a digital tri-axis compass and a temperature

sensor has been collected together into a single evaluation board shown in

Fig.1.0.

This evaluation board can be used by itself using I
2
C or SPI (MPU0111

only) or it can be connected to InvenSence 's ARM evaluation board for

Figure 1.0: MPU0121 Evaluation board [after 2]

 12

connecting to the host computer using USB interface. Shown in Fig.1.7 is

the system diagram of the evaluation board.

There are some jumpers on this evaluation board for special purposes, like

jumper (J01) which is 01x2 pins including power supply, I
2
C pins, address

pin, external clock, interrupt, and synchronization pin. Jumper (J01) on the

top of the board is intended for connecting additional devices to EV board,

such as camera image stabilization processor, or a digital-output compass, or

a GPS.

The three-pin power selection header (JP02) is used to select which voltage

supply is fed to MPU. The 1-pin VLOGIV selection header (JP0) is used to

select between 1V and VDD as a logic supply voltage. When VDD is

selected as a logic supply voltage, the input voltage VDD should be between

2.2-1.1V. But it is recommended to use 1V (Jumper 0, 0-2 short) to have

the expected performance as stated in the datasheet. On the I
2
C bus, there are

open drain pull up resistors connected, so there is no need that the user

connect external pull up resistors.

The MPU0121 EVB has the address of 1x01 when the address pin voltage is

zero (pin 21on jumper JP01), but when the voltage of this pin is set to VDD

(1V, Jumper 0, 0-2 short), the address will be changed to 1x07. That was

very useful in our project, since we have 1 of this evaluation board, and two

I
2
C buses on BeagleBoard. So, one can connect two of this evaluation board

on the same bus.

MPU.656 setup and data acquisition

The IMU used in this project works with I
2
C protocol at a maximum speed

of 111 kHz. Setup is performed by writing to the various configuration

registers. We only needed to write to specified registers which can wake up

the device, set the required registers, and then reading data.

The procedure is as follow:

0. Initialize I
2
C bus with the aimed sensor (by giving the bus number and

IMU address).

Figure 1.7: MPU0121 system diagram (after Invensense webpage)

 11

2. Wakeup the sensor by writing zero to the bit number six of the power

management register and specify clock source by writing to the last

three LSB of the same register.

1. Enable data-ready interrupt to synchronize the data reading with the

BeagleBoard by writing one to the bit number zero of the interrupt

enable register.

1. Specify the sample rate by writing to the register sample rate divider.

 The sample rate can be specified by dividing the gyroscope output rate

by sample rate divider according to the following

 Sample rate = Gyroscope output / (01sample rate divider).

2. Specify the bandwidth and digital low pass filter by writing to the

register configuration

0. Select the gyroscope and accelerometer full scale range by writing to

the registers gyro configuration and accelerometer configuration

respectively.

7. Write to the bit number six of the register user control to enable the

FIFO buffer.

Stated above are the initialization and setup of the MPU0121 EVB, the

reader is advised to read the MPU0121 register map and description for

more detail of each register function and the other register settings.

1.0.1 Circuit diagram

Shown in Fig.1.1 is the circuit which has been made to connect the

MPU0121 EVB to the BeagleBoard through I
2
C.

2V DC

supply

Serial port

to PC

USB OTG

to PC

IMU_1

IMU_1

IMU_2

IMU_0

 11

Because of the voltage different in logic lines between BeagleBoard and

IMU, the logic level converter has been used with 2-line data transfer in both

directions and 2-line data transfer in on direction. This logic level converter

can transfer data up to 111 kHz, which is the maximum frequency of our

IMU.

IMU_0 and IMU_2 are connected on the I
2
C bus 2 and their addresses are

1x07 and 1x01 respectively.IMU_1 and IMU_1 are connected on the I
2
C

bus 1, with the addresses 1x07 and 1x01 respectively. The sensor side of the

logic leveler is the high voltage (1.1V), while the right side is the low

voltage (0.1V).

1.2 Software environment

 For the sake of reading and transferring data from /to hardware, there are

some steps that have to be made on both Laptop and BeagleBoard. For the

Laptop, Ubuntu 00.11 Linux operating system has been installed alongside

Windows 7. The installation steps were straightforward as stated in the

Ubuntu website. While for the BeagleBoard, it was somehow difficult to set

it up for the required hardware configuration.

 1.2.0 Operating system

 Ångström, which is open-source, free software, Linux-based operating

system has been installed on the BeagleBoard, which gives the minimum

requirement (Console) for interfacing to the sensors from one side, and to

connect to the Laptop from the other side. In the following section the

details of how to install Ångström and the other requirements to setup the

BeagleBoard will be clarified. Later on, the requirements of how to send and

receive data between BeagleBoard and the Laptop will be stated.

 Getting booting files

 For first time booting of the BeagleBoard, the pre-built binaries and source

code can be found in the following link:

 http://www.angstrom-distribution.org/demo/beagleboard/

Figure 1.1: Circuit diagram

 12

The following binary files are needed:

• MLO

• u-boot.bin

• uImage

• Angstrom-Beagleboard-demo-image-glibc-ipk-

2100.0beagleboard.rootfs.tar.bz2

The ROM code on the BeagleBoard loads the MLO from MMC card for

MMC booting. This booting is automatically established when a SD card is

inserted on the board. The MLO binary then loads uboot.bin which is in

charge to load the kernel image.

The MLO allows the first boot-loader called X-loader starts up. The u-

boot.bin loads the second bootloader which is needed to start basic

communication with the hardware and it will provide a basic environment

based on a shell. In the u-boot prompt some variables can be set (kernel boot

arguments), such as serial communication arguments, which kernel image

should be loaded, place where the operative system will be loaded from (in

our case from the external SD card), and many other options. The binary file

uImage will pass the kernel image which is the kernel for our Linux system.

The kernel is the responsible for the correct interaction with the hardware of

the board and it's very important that this file is compiled properly in order

to boot the Linux system successfully. In following chapters it will be

described how to build our own uImage to get a customized kernel for our

specific requirements.

 Copying the binary files into the SD card

We insert the SD card in the PC memory card reader. The three binary files

described above have to be saved in the boot partition (FAT12) of the SD

card by typing in the Laptop's Linux shell the following:

 cp MLO /media/LABEL0

 cp u-boot.bin /media/LABEL0

 cp uImage /media/LABEL0

The commands order is very important. The files can be directly copied

using a graphical file explorer instead typing the commands above. Finally

the fourth file downloaded is the root file system which will be stored and

uncompressed in the second partition of the SD card (EXT1).

 10

 starting up Ångström

Finally, the SD memory card is ready. Once Ångström is loaded, the prompt

of Linux-Angström should be displayed. Now, the board is ready to start

installing the necessary tools for developing the first application. To login in

the system, we type root and press enter. Fig.1.7 is the typical layout of the

Ångström's operating system at login step.

 Connecting BeagleBoard with Laptop through USB

It is required to connect BeagleBoard to the host computer through USB for

easy file transfer between them, and also to make internet available in the

BeagleBoard. In this scenario, the host computer will serve as a router for

the Ångström device and it is required to configure accordingly. The

detailed step by step procedure of this task is stated in [1].

 Building applications for BeagleBoard

We need to install a cross-compiler in the Laptop which will let us compile

the programs for the BeagleBoard architecture (ARM processor). When the

Figure 1.7: Ångström's terminal

 17

program is compiled, we will transfer the binary file to the BeagleBoard

through USB using scp file transfer protocol. When we try to compile the

executable file out of the compilation in the Laptop, it will results in error

since the compiled file is build for ARM architecture. it is recommended to

read [1] where it is clearly stated how to build applications for BeagleBoard.

There is also another way (user friendly) to compile debug and programs for

the BeagleBoard using Eclipse platform which is highly recommended if the

user writes long and complicated codes and is stated step by step for

BeagleBone, which is the same as BeagleBoard, in the webpage of Dr.

Derek Molloy.

 BeagleBoard I
2
C setup

 In this project we are required to have two I
2
C buses so that we will be

able to connect the four sensors on them. BeagleBoard has three I
2
C buses,

in which two of them are pinned out and can be used by the user. However,

by default bus 2 is disabled due to a lack of pull-up resistors on the board, so

external pull-ups to 0.1V must be added and the kernel recompiled to enable

I
2
C-2. The detail of how to enabling it and setting the bus frequency of both

I
2
C s to maximum of 111 kHz is clearly stated in [1], so it is not described in

here particularly due to the size of the thesis .

1.2.2 Real time issues

 Unlike classical microcontrollers, the BeagleBoard processor requires an

operating system for proper operation, so a strong knowledge of how they

work is required. For real time tasks where the execution time is critical, the

operating system workload is a big issue. Background processes create

latencies; however, they are essential for proper operation of the whole

system. since the operating system that has been installed on BeagleBoard is

Linux-based, by default it has no build-in real time operating system(RTOS)

coming with it. According to [1], if the real time operating system is

installed properly, the latency can be reduced from milliseconds to

microseconds, and the accuracy of the data reading is increased. The

working principle of a proposed RTOS used in [1], which is Xenomai and I-

pipe, add a extra layer between the hardware and the Linux kernel, to

manage real-time tasks separately. As shown in the Fig.1.01. The real-time

operating system has not been used in this thesis due to the time limitation,

since it requires kernel reconfiguration and recompilation.

 11

4 Experiments and results

1.0 Heading calculation by Maytagging technique

 The true north can be found if the earth rotation is measured properly by

the gyro. The earth rotation rate according to World Geodic System 0711

(WGS11) is Ωe=7272002 x 01
-00

rad/s [0]. The lowest input range of the

MPU0121 is 0221º/s while the magnitude of the signal needs to be detected

is approximately 1.111 º/s. Under this condition, it can be seen that

detecting such a week signal requires precise error analysis.

The proposed method for error characterization is the Allan variance that is

already described in section 2.2.0. The type of error that rapidly changes in

a short period of time in the gyro's output signal is called bias instability.

Bias instability measurement describes how the dynamic bias of a device

may change over a specified period of time, typically around 011 seconds, in

fixed conditions (usually including constant temperature) [7]. Bias

instability is usually specified as a 0σ value with units ◦/h, or ◦/s for less

accurate devices. Under the random walk model bias instability can be

interpreted as follows; If Bt is the known bias at time t, then a 0σ bias

stability of 1.10◦/h over 011 seconds means that the bias at time (t + 011)

seconds is a random variable with expected value Bt and standard deviation

1.10◦/h [7].

Figure 1.01: RTOS principle

 17

For capturing the bias instability and other errors in our gyroscope, data

from all MPU0121 modules has been logged for about 01 hours at a

sample rate of 21 Hz and at room temperature and the output for one of them

is shown in Fig.1.0. There were 1 units of this module; each unit has 1 axis

gyroscope. In our work, only x and y axis are used for finding north

direction.

Bellow is the Allan variance graph for each gyroscope generated after the

MATLAB code created by [07].

Figure 1.2: Allan deviation

Figure 1.0: Raw data as a function of time

Good candidates

to be used

 11

From Figure 1.2, it is obvious that the bias stability is different for each

sensor and also for each axis. For example the x axis of fourth sensor is

about 1 º/h while for its y axis it is about 1 º/h.

Based on this plot, the x and y axis of first sensor and x axis of the fourth

sensor and y axis of the third sensor are used in this project since the include

the least bias instability and they are almost at the same averaging time τ.

Measuring the Earth's rotation rate

 In order to measure the magnitude of the Earth's rotation rate, the external

factors that affect the output data of the gyroscope sensor must be carefully

compensated for. One of these factors is the gravitational force which has a

large effect over the gyroscope data. To compensate for this factor, the

sensitive axis of the gyro can be aligned parallel with the local horizontal

plane as shown bellow [0].

By using this method, the gravity effect can be eliminated because its value

will be the same in all measurement positions. Also to compensate for

gyroscope static bias, the turntable is used and rotated 011 degree.

The mathematical model for the gyroscope reading at each position is [0]

Figure 1.1: GPS/INS coordinate system [after 1]

 10

 ωposition= ωearth cosφ cosψ + b + bg

(1.0)

 ωposition1011º= - ωearth cosφ cosψ + b + bg

(1.2)

Where b is gyro bias, φ is the latitude, and bg is g-sensitivity which is

unknown but constant value. Ψ represents the angle between the sensing axis

and the north direction. By subtracting equation 1.0 from 1.2 we get [0]

 Ωe cosφ cosψ=
2

180


positionposition 

So, if the latitude and earth rate are known, the only unknown would be the

angle ψ.

The experiments were conducted in Siegen, Germany at latitude 21.1º N. the

sampling rate of the sensor was 21 Hz, and the MATLAB R2111a is used

for data processing and plotting.

The sensor axes were aligned with the north direction as shown in Fig.1.1,

and then the data were logged for about 011 second according to Allan

variance plot. Then the setup was rotated 011º to the opposite position. We

took 01 position, starting from 1 (north) for y axis and 71 (East) for x axis

and incrementing 01 º clockwise each time.

 (1.1)

Ys

Xs

Turn table

Logic leveler

BeagleBoard

1 2 3 4

Sensor array

 12

According to the setup shown above, the first measurement at zero position

(y-axis is pointing to the north and x-axis is pointing to the east) for y-axis

should be maximum and for x-axis should be almost zero after we remove

the bias from measurements (by rotating 011 degree).

After the measurements were completed, the files have been uploaded to

MATLAB program for analysis and plotting.

Here, we first tried to check whether the sensor can detect the earth rotation

or not. To do so, we gave the value of angle ψ to be zero when the y-axis of

the sensors are pointing to the north direction and then increasing it 01º for

each new position. so, according to equation 1.1 the angles φ and ψ are

known, and ωposition is the sensor reading at zero position, and ωposition1011º is

also the sensor reading at opposite position then the only unknown will be

the earth's rotation Ωe.

Fig.1.2 shows how the angle ψ is assigned and how the rotations are

performed

Figure 1.1: sensor's axes alignment

ψ

ψ

Xs

Ys

Figure 1.2: Angle ψ and sensor's rotation direction

 11

The earth rotation value detected by the sensor's y-axis is shown bellow.

In the Fig.1.0, the blue line is the theoretical value of the earth rotation that

is supposed to be sensed by the sensors. It is the calculated by multiplying

the earth rotation with the cosine of the rotated angle ψ, in which angle ψ

starts from 1º to 011º. The y-axis of first sensor, plotted in green line, and

the y-axis of the third sensor, plotted in red line, are fluctuating around the

theoretical value of earth rotation.

The error in the earth rotation detection can be reduced by taking the mean

value of both sensors as it can be seen in cyan color, which is more close to

the theoretical value of earth rotation.

Figure 1.0: measured Earth rotation with sensor's y-axis.

 11

The same measurement for sensor x-axis is shown in the figure bellow.

As the angle ψ increases, the angular rotation sensed by the sensors

increased until they reach their maximum value at angle 011º then they start

to decrease again as the angle gets larger. Here is also the mean value of the

sensors output give a better result which is closer to the theoretical value.

After it has been found that the sensor is able to detect the earth rotation, the

next step is to measure the north direction angle ψ.

Equation 1 can be rearranged and expressed in terms of angle ψ [0]

Figure 1.7: measured Earth rotation with sensor's x-axis.

 12

 ψ =  
e

positionposition






*cos*2
cos

1801



 

Based on this equation, the following figure has been generated, which

represents the detected angle with north direction using y-axis of the sensors.

The maximum value of the Earth's rotation in Siegen is about 7.11 deg/h,

but as it can be seen from Fig.1.0, at the beginning and the end of the graph

the sensors reading exceed this value because of added noise, and if we

substitute them in equation 1.2, we will have undefined number for angle ψ.

to solve this problem, we need to normalize these exceeded values to the

range bellow the Earth's rotation.

Here it should be mentioned that the north finding system using this method

has 011 º ambiguities, since we are using cosine function. For example when

the result of (ωpos -ωpos1011) in equation 1.2 is 1.2, the angle ψ would be 01 º,

but when it is -1.2, the angle ψ would be 021º. This can be solved by

checking the sign of x and y axis of the sensors. For example, when the

value of gyro y-axis is positive and the x-axis is negative, then we can tell

which angle we are measuring with the north direction. Or it can be done,

(1.2)

Figure 1.1: measured angle ψ using y-axis of sensors

 10

e.g., by rotating 101± at a certain spacing and fitting a sine curve on the

measurements [0].

Figure below shows the sign of the detected earth rotation, and it matches

the result obtained shown in figures 1.0 and 1.7.

1.2 Gyro-bias compensation using distributed accelerometer triad

 In this method, the bias in the gyroscope is detected by means of a

distributed accelerometer triad. If the gyroscope bias is detected, the

gyroscope can be used to detect the Earth rotation.

As it is stated in section 1.0, the gyroscope is used to find the Earth rotation

by logging data at first position for a specified time, then rotating the setup

with 011 degree to the second position. The purpose of this rotation was to

remove the bias from the gyroscope. Here we are going to detect this bias

and subtract it from gyro bias.

The idea behind this method is the accelerometers is used to calculate

rotational speed using extended Kalman filtering, and then the output of

X-axis

North

Y-axis

+++++++

+++++++

- - - - - - -

- - - - - - -

East

Figure 1.7: Gyroscope output sign ambiguity

 17

gyroscope is compared with the rotational speed calculated from

accelerometer triad to detect the gyroscope bias.

Kalman filtering

 The Kalman filter is a tool that can estimate the variables of a wide range

of processes. In mathematical terms we would say that a Kalman filter

estimates the states of a linear system. The Kalman filter not only works

well in practice, but it is theoretically attractive because it can be shown that

of all possible filters, it is the one that minimizes the variance of the

estimation error. Kalman filters are often implemented in embedded control

systems because in order to control a process, you first need an accurate

estimate of the process variables [01]. The filter is very powerful in several

aspects: it supports estimations of past, present, and even future states, and it

can do so even when the precise nature of the modeled system is unknown.

Figure bellow shows the simple working principle of the Kalman filter.

Figure 1.01: Update time and measurement in Kalman filter

In Kalman filter, a process is estimated by using feedback control. It

computes the process state at some time and then obtains feedback in the

form of (noisy) measurements. The equations fall into two groups:

time update equations and measurement update equations. The time update

equations are responsible for projecting forward (in time) the current state

and error covariance estimates to obtain the a priori estimates for the next

time step. The time update projects the current state estimate ahead in time

while the measurement update adjusts the time estimate.

 11

The Kalman filter removes noise by assuming a pre-defined model of a

system. Therefore, the Kalman filter model must be meaningful. It should be

defined as follows [00]:

0. Understand the situation: Look at the problem. Break it down to the

mathematical basics. If you don’t do this, you may end up doing unneeded

work.

2. Model the state process: Start with a basic model. It may not work

effectively at first, but this can be refined later.

1. Model the measurement process: Analyze how you are going to

measure the process. The measurement space may not be in the same space

as the state (e.g., using an electrical diode to measure weight, an electrical

reading does not easily translate to a weight).

1. Model the noise: This needs to be done for both the state and

measurement process. The base Kalman filter assumes Gaussian (white)

noise, so make the variance and covariance (error) meaningful (i.e., make

sure that the error you model is suitable for the situation).

2. Test the filter: Often overlooked, use synthetic data if necessary (e.g., if

the process is not safe to test on a live environment). See if the filter is

behaving as it should.

0. Refine filter: Try to change the noise parameters (filter), as this is the

easiest to change. If necessary go back further, you may need to rethink the

situation.

Multiple distributed accelerometer triad

We focus on configurations consisting of twelve mono-axial accelerometers.

Without loss of generality; we consider the set of four tri-axial

accelerometers shown in Fig.1.02 as an example configuration that follows

the rules for extracting the angular information vector (AIV) without

inhibiting singularity of the coefficient matrix [0].

Mainly we consider this configuration because a minimum of twelve

accelerometers are needed to determine the magnitude of the angular

velocity and its direction (algebraic sign cannot be determined uniquely).

The greatest amount of angular motion information, which is in the nine

angular terms that we show next, can be extracted from this configuration.

Moreover, this configuration has a low geometric dilution of precision

(GDOP) factor for both angular and translational acceleration without the

 17

central accelerometer triad. Finally yet importantly, it is the most practical

configuration because IMUs exist in triads of gyros and accelerometers [0].

 Figure 1.02: Configuration of multiple distributed accelerometers

For the case of uniform distribution distance d (which is 11 cm), The AIV is

[0]:

 
.

/ 2C A D Aa a a a dz z y yx    

 
.

/ 2D A B Aa a a a dz zx xy     (1.0)

 
.

/ 2B A C Aa a a a dy y x xz    

 21

  / 2B A C Aa a a a dy y x xx y     

  / 2B A D Aa a a a dz z x xzx      (1.7)

  / 2C A D Aa a a a dz z y yzy     

 2 / 2B A C A D Aa a a a a a dz zx x x y y      

 2 / 2C A B A D Aa a a a a a dz zy y y x x       (1.1)

 2 / 2D A B A C Aa a a a a a dz z z x x y y      

All previous equations are linear combinations of accelerometers

measurements. The notation triad

axisa refers to the distributed accelerometer

measurement with the superscript referring to the triad location and a

subscript referring to the axis index.

The calibration of the triads are performed after that as stated in section

2.1.0 so that the sensors axes are unified to the triad axis and also to find

misalignment, scale factor, and bias.

The three-State model EKF

Based on the previously derived AIV (1.0, 1.7, and 1.1), we can formulate

the EKF setup. The quadratic terms do not give a unique angular velocity

vector solution. Instead we get two solutions. In our setup, we consider only

a fixed accelerometers configuration. For the determination of the algebraic

sign in a completely GF-IMU, the gyros have been used to insure a correct

sign convergence in the GF-IMU. We are interested in estimating the

angular velocity component along each body axis in 1D.

In reality, the continuous angular velocity vector is replaced with the angular

change vector because the computerized implementation is discrete. The

angular change is the sampled angular velocity multiplied by the sampling

time and is given as [0]

 20

 1 2 3[] []T Tx x x x zx y    (1.7)

0. Initialization

 The initial state vector can be set as

 0 0
00 0

ˆ { } []Tx E x zx y  

  (1.01)

 The initial estimation error covariance is given as

 0 0 0 00
ˆ ˆ{()() }TP E x x x x
     (1.00)

2. Prediction

 In discrete time, the actual output of each accelerometer is the velocity

change; hence the output of (1.0) is the angular velocity change vector α .

The process model based on Euler integration is

1 1 1k k k kx x x xt w  
  

   

1 1 1k k k ky y y yt w  
  

    (1.02)

1 1 1k k k kz z z zt w  
  

   

We then define the process input as the following

 []T

x y zu t t t t         (1.01)

Using (1.01), the process given in (1.02) has a linear form of

1 1 11 1

1 1 3 3

k k kk k
k

k k xl

x F x G u w

F G

   

  

  
 (1.01)

We assume that the uncertainty in the process is mainly due to the

uncertainty in the angular velocity change. Here, we consider the error of

each accelerometer as white Gaussian noise for simplicity. For an

accelerometer error accounting for the remaining bias, we developed a

solution utilizing the dynamic models to estimate the bias parameters in the

nine angular information terms. In that solution, the bias parameters and the

angular acceleration vector are augmented within the state-space model to

form a 02-state model. For that process update, we used the Wiener process

or simply the nearly constant acceleration model.

When using such a model, all the bias parameters in the AIV become

observable under the condition that the angular acceleration has a non-zero

magnitude.

 22

The three-state model has the advantage of simple calculations because only

three states need to be estimated. Moreover, there is no need to make an

assumption about the dynamics of the motion, and hence such a solution fits

most scenarios. Each accelerometer discrete time measurement is composed

of true value plus a white noise component

 /meas true acca a w t  (1.02)

The white noise accw has the unit of g /Hz, where g is the gravity or its

equivalent derivatives. The discrete white noise depends on the square root

of the sampling time t . The measured velocity change of each

accelerometer is expressed as

 meas true accv v w t   (1.00)

The variance Ra of each accelerometer measurement of velocity change is

 2 2{() } { }a meas true accR E v v E w t     (1.07)

All accelerometers are modeled with a common upper bound of the noise

variance, as they would be in reality. The error corrupting the angular

acceleration vector given in (1.0) is inherited from the accelerometers'

errors, as it is a linear combination of accelerometers. This combination

results in a correlated process noise, and its covariance is computed as

  
2

1 2

1 1
1

4 4

1 1
1

4 4

1 1
1

4 4

a
k

R
Q t

d

 
  

 
         

 
  
  

 (1.01)

The predicted or a priori estimation error covariance is updated as

 1 1 1 1

T

k k k k kP F P F Q 

     (1.07)

The predicted or priori state estimate is updated as

 1 11 1
ˆ ˆ

k k kk kx xF G u 

    (1.21)

1. Measurement update

 We plug the measured velocity changes of the accelerometers in the six

quadratic terms in to (1.7) and (1.1) and multiply the resulting sum by the

sampling time to derive the measurement of the state vector. Considering the

existence of white Gaussian noise in each accelerometer measurement, the

observation inherits also a white Gaussian noise v vector

 21

2 2 2

1 2 1 2 2 3 1 2 3

61[.....]

(,) []T

kk k

T

k

y h x v x x x x x x x x x

v v

 
 (1.20)

The Jacobian of the measurement vector is computed as

2 1

3 1

3 2

ˆ
1

2

3 ˆ

0

0

0(

0 0

0 0

0 0

,)

2

2

2

k

k

k

x x

x x

x x

x x

x xh x v
H

xx

x

x









 
 
 
 

  
 
 
 
  





 (1.22)

The measurement is corrected, and its covariance is computed as

 2

2

1 1 1
1 0 0

4 4 2

1 1 1
1 0 0

4 4 2

1 1 1
1 0 0

4 4 2
(

1 3 1 1
0 0

2 2 2 2

1 1 3 1
0 0

2 2 2 2

1 1 1 3
0 0

2 2 2 2

) a
k

R
R t

d

 
 

 
 
 
 
 

   
     

 
   

 
 

   
 
 
    

 (1.21)

The process noise is correlated with the measurement noise, and its cross-

covariance is computed as

1

2

2

1 1 1 1
0 0

4 4 2 2

1 1 1 1
0 0

4 4 2 2

1 1 1 1
0 0

4 4 2 2

{ }

()

T

k j k k j

a
k

E w v M

R
M t

d

  

 
  
 

         
 
  
  



 
 (1.21)

The Kalman gain is updated since the cross-covariance has been considered

to have better performance.

 21

 1()()T T T T

k k k k k k k k k k k kK P H M H P H H M M H R      (1.22)

The corrected or posteriori estimation error covariance is updated as

 ()T

k k k k k kP P K H P M    (1.20)

The corrected or posteriori state estimate is updated as

 ((,0))ˆ ˆ ˆ
k k k kk k

x x K y h x
  

  (1.27)

Then we used MTLAB program to detect the bias of the gyroscope by

comparing the rotational speed obtained from the accelerometer triad with

the gyroscope rotational speed.

The gyro-bias compensation by using gyro-free IMU configuration is based

on the fact that the gyro-free IMU gives the angular information vector

(AIV) which can be corrected from the bias.

Hence, the bias-free AIV can correct for the gyro bias using proper

integration filter. This system has been implemented using 1x MPU0121

accelerometers and 0 gyro triad as shown in Fig.1.02. This method is not

able to be used to find the north direction because the dynamic part of the

gyro bias is dependent upon the Earth's gravity. However, this method can

correct for the relatively large bias values as we will show in the next

coming figures. The bias of the AIV can be captured easily because in a

static position, the angular acceleration due to the Earth rotation is should be

zero, and hence what could be measured is the bias.

Similarly, quadratic terms due to the Earth's rotation are extremely small and

hence their values should be very close to zero and it can be used to find the

bias in the static position. So, the system can be used to have a bias-free gyro

system.

We can use a profile of motion that consists of a static and dynamic phases.

The static phase corrects for the AIV-bias, and the dynamic phase corrects

for the gyro-bias.

Figures below show how the gyroscope added bias can be detect using a

described filter. For that, we used different value of biases and checked the

convergence of the estimated bias using described method above.

 22

Fig.1.01 shows the estimation gyro bias for the added gyro bias of 1.0 rad/s.

Figure 1.01: Estimated gyro bias when added bias is 1.0 rad/s

Then the added bias has been increased to 1.0 rad/s to see the filter behavior.

From Fig.1.01, it is clear that the bigger the added bias, the better the filter

performance would be, and the more the detected bias.

 20

Figure 1.01: Estimated gyro bias when added bias is 1.0 rad/s

5 Conclusion and future work

2.0 Conclusion

 This thesis has described a method for finding a heading direction using

low cost MEMS inertial measurement units. The Gyroscope which was used

as a stand-alone sensor in the first method is determined to be good enough

for the detection of the Earth rotation.

 The characterization of the errors that are involved with the MEMS

Gyroscope was very crucial, since the noise level of the sensor can be

measured and then compared with the signal that is needed to be measured,

in this case the Earth's rotation, to see whether the signal to noise ratio is low

enough to have a correct measurement.

 Allan variance, which is a powerful tool used for IMU sensor error

characterization, was used to characterize the errors of gyroscope. The bias

instability is measured for each axis of the gyroscopes and shown that each

gyroscope axis has different bias instability value. The best candidates, those

who have lowest bias instability level, was selected and used since the bias

instability threshold must not exceed the Earth's rotation measured signal.

 IMU calibration was performed to obtain the meaningful physical value

out of a raw data coming out of sensors. Also it united different coordinate

 27

frame of the accelerometer triads into one coordinate frame. Then the bias,

misalignment, scale factor was measured, as the output parameters from the

calibration process.

 Earth rotation has been measured using Maytagging (gyrocompassing)

method. The north direction from the detected rotation was calculated and

compared with the theoretical value of the turntable rotated angle. The

results showed that the proposed type of gyroscope was suited for detecting

the low signal of Earth's rotation with some percentage of error that was

caused by the bias fluctuation from temperature change between the

measurements.

 Finally, the accelerometer triad was used to detect the bias fluctuation of the

gyroscope. Extended Kalman filter was used to calculate rotational speed out

of the linear acceleration from the accelerometer. Then the rotational speed

from accelerometers was compared with the gyroscope rotational speed to

track the bias fluctuation of the gyroscope. While the frame was moved in a

1D space, the gravity affected the gyroscope measurements and let to

making it somehow difficult to track the whole part of gyroscope bias, so we

added some bigger value to check the functionality of the filter.

2.2 Future work

 The north finding system should be tested on an actual ground

navigation platform.

 Kalman filter can be used with taking temperature compensation into

account to increase the performance of the gyroscope.

 Real-time system can be realized on the BeagleBoard's operating

system like Xeonomai to reduce the latency of the data logging

process and gaining higher sampling rate out of the system.

 21

Appendix I.

C- code

/******MPU0606.c******/

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <unistd.h>

#include <linux/i2c-dev.h>

#include <sys/ioctl.h>

#include <sys/time.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <sched.h>

#include <fcntl.h>

#include <stdint.h> //used for int61_t

#include <errno.h>

#include "MPU1606.h"

#include "i2c.h"

unsigned char XACCH;

 27

unsigned char YACCH;

unsigned char ZACCH;

unsigned char XACCL;

unsigned char YACCL;

unsigned char ZACCL;

unsigned char XGYROH;

unsigned char YGYROH;

unsigned char ZGYROH;

unsigned char XGYROL;

unsigned char YGYROL;

unsigned char ZGYROL;

unsigned char FIFO;

unsigned char TEMPH;

unsigned char TEMPL;

unsigned char interrupt;

float sensor6[0666666]={6},sensor2[0666666]={6},

sensor3[0666666]={6},

sensor4[0666666]={6};

int61_t aX6,aY6,aZ6,gX6[0666666]={6},gY6[0666666]={6},

gZ6[0666666]={6},aX2,aY2,aZ2;

 //index 6 reffers to rensor on bus-3 with address 6x16

 //index 2 reffers to rensor on bus-3 with address 6x16

 int61_t aX3,aY3,aZ3,gX3,gY3,gZ3,aX4,

 aY4,aZ4,gX4,gY4,gZ4,temp;

int write_address(unsigned char reg){

 buf[6] = reg;

 if (write(i2c_file,buf,6) != 6) {

 printf("Failed to write to the i2c bus.\n");

 printf("%s\n",strerror(errno));

 return 6;

 }

 return 6;

}

/**

*********/

//Write a byte to an address

int write_byte(unsigned char reg, unsigned char data){

 buf[6] = reg;

 buf[6] = data;

 if (write(i2c_file,buf,2) != 2) {

 printf("Failed to write to the i2c bus.\n");

 printf("%s\n\n",strerror(errno));

 return 6;

 }

 return 6;

 01

}

/**/

//Read a byte from the current address

int read_current_byte(unsigned char * data){

 if (read(i2c_file,buf,6) != 6) {

 printf("Failed to read from the i2c bus.\n");

 printf("%s\n\n",strerror(errno));

 return 6;

 }

 *data = buf[6];

 return 6;

}

/**/

//Read a byte from the passed register

int read_byte(unsigned char reg, unsigned char * data){

 //Write the register's address

 if(write_address(reg) == 6)

 return 6;

 //Read from that address

 return read_current_byte(data);

}

/******************* MAIN*****************************/

int main() {

 int add=6x16,i;

 for(i=6;i<2;i++)

 {

 init_i2c(add,2);

 write_byte(PWR_MGMT_6,PWR_MGMT_6_V_R); //reset

the device

 write_byte(USER_CTRL,6x66);

 write_byte(USER_CTRL,6x63);

 close(i2c_file);

 add=6x16;

 }

 add=6x16;

 for(i=6;i<2;i++)

 {

 init_i2c(add,3);

 write_byte(PWR_MGMT_6,PWR_MGMT_6_V_R); //reset

the device

 write_byte(USER_CTRL,6x66);

 write_byte(USER_CTRL,6x63);

 00

 close(i2c_file);

 add=6x16;

 }

 add=6x16;

 //initialize sensors on bus 2

 for(i=6;i<2;i++)

 {

 init_i2c(add,2); //open i2c bus, address

6x16.when i becomes 6, sensor with address 6x16 will be

initialized

 write_byte(PWR_MGMT_6, PWR_MGMT_6_V); //wake-

up the sensor

 write_byte(INT_ENABLE, INT_ENABLE_V); //enable

data ready interrupt

 write_byte(PWR_MGMT_2,PWR_MGMT_2_V_R);

//deactivate standby mode

 write_byte(SMPLRT_DIV, SMPLRT_DIV_V);

//sample rate = gyro output

 write_byte(CONFIG,CONFIG_V); //gyro output = 6kHz

 write_byte(GYRO_CONFIG, GYRO_CONFIG_V); //gyro

scale +/- 206 deg/sec

 write_byte(ACCEL_CONFIG, ACCEL_CONFIG_V); //acc

scale +/- 2g

 write_byte(USER_CTRL,USER_CTRL_V);

 write_byte(FIFO_EN,6x66); //enable FIFO

buffer

 close(i2c_file);

 add=6x16;

 }

 add=6x16; //reset address, since it became 6x16

from previous step

 //initialize sensors on bus 3

 for(i=6;i<2;i++)

 {

 init_i2c(add,3); //open i2c bus, address

6x16.when i becomes 6, sensor

with address 6x16 will be initialized

 write_byte(PWR_MGMT_6, PWR_MGMT_6_V); //wake-up

the sensor

 write_byte(INT_ENABLE, INT_ENABLE_V);

 write_byte(PWR_MGMT_2,PWR_MGMT_2_V_R);

//deactivate standby

 mode

 write_byte(SMPLRT_DIV, SMPLRT_DIV_V);

//sample rate = gyro

 output

 02

 write_byte(CONFIG,CONFIG_V); //gyro output = 6kHz

 write_byte(GYRO_CONFIG, GYRO_CONFIG_V); //gyro

scale +/- 206

deg/sec

 write_byte(ACCEL_CONFIG, ACCEL_CONFIG_V); //acc

scale +/- 2g

 write_byte(USER_CTRL,USER_CTRL_V);

 write_byte(FIFO_EN,6x66); //enable FIFO

buffer

 close(i2c_file);

 add=6x16;

 }

 /**/

 //write data to a txt file

 FILE *p = NULL;

 char *file =

"/home/programs/bias_detection.txt";

 p = fopen(file, "w");

 if (p== NULL) {

 printf("Error in opening a file.");

 }

 usleep(666666); //wait 666 msec for the data to be ready

/**/

 printf("data reading started\n ");

 long n=6,j=6;

 int number_of_samples=6666; //data logging for 26

second

 while(n<number_of_samples)

 {

 //reading from sensor 6 (i2cbus -2 address 6x16)

 init_i2c(6x1692);

 read_byte(INT_STATUS, &interrupt); //using

polling of data when a

 new data is available

 close(i2c_file);

 if(interrupt & 6x66){

 init_i2c(6x1692);

 for(j=n*1;j<(n*1+1);j++)

 {

 read_byte(6x44,&FIFO);

 sensor6[j]=FIFO;

 }

 read_byte(GYRO_XOUT_H, &XGYROH);

 read_byte(GYRO_XOUT_L, &XGYROL);

 gX6[n]=((XGYROH)<<6) | XGYROL;

 01

 read_byte(GYRO_YOUT_H, &YGYROH);

 read_byte(GYRO_YOUT_L, &YGYROL);

 gY6[n]=((YGYROH)<<6) | YGYROL;

 read_byte(GYRO_ZOUT_H, &ZGYROH);

 read_byte(GYRO_ZOUT_L, &ZGYROL);

 gZ6[n]=((ZGYROH)<<6) | ZGYROL;

 close(i2c_file); //close the connection

/***/

 init_i2c(6x1692);

 for(j=n*1;j<(n*1+1);j++)

 {

 read_byte(6x44,&FIFO);

 sensor2[j]=FIFO;

 }

 close(i2c_file); //close the connection

 init_i2c(6x1693);

 for(j=n*1;j<(n*1+1);j++)

 {

 read_byte(6x44,&FIFO);

 sensor3[j]=FIFO;

 }

 close(i2c_file); //close the connection

 init_i2c(6x1693);

 for(j=n*1;j<(n*1+1);j++)

 {

 read_byte(6x44,&FIFO);

 sensor4[j]=FIFO;

 }

 close(i2c_file); //close the connection

 n=n+6;

 }

 }

n=6;

 while(n<number_of_samples)

 {

 for(j=n*1;j<(n*1+6);j++)

 {

 XACCH=sensor6[j];

 XACCL=sensor6[j+6];

 YACCH=sensor6[j+2];

 YACCL=sensor6[j+3];

 ZACCH=sensor6[j+4];

 ZACCL=sensor6[j+0];

 01

 }

 aX6=((XACCH)<<6) | XACCL;

 aY6=((YACCH)<<6) | YACCL;

 aZ6=((ZACCH)<<6) | ZACCL;

/***/

 for(j=n*1;j<(n*1+6);j++)

 {

 XACCH=sensor2[j];

 XACCL=sensor2[j+6];

 YACCH=sensor2[j+2];

 YACCL=sensor2[j+3];

 ZACCH=sensor2[j+4];

 ZACCL=sensor2[j+0];

 }

 aX2=((XACCH)<<6) | XACCL;

 aY2=((YACCH)<<6) | YACCL;

 aZ2=((ZACCH)<<6) | ZACCL;

/***/

 for(j=n*1;j<(n*1+6);j++)

 {

 XACCH=sensor3[j];

 XACCL=sensor3[j+6];

 YACCH=sensor3[j+2];

 YACCL=sensor3[j+3];

 ZACCH=sensor3[j+4];

 ZACCL=sensor3[j+0];

 }

 aX3=((XACCH)<<6) | XACCL;

 aY3=((YACCH)<<6) | YACCL;

 aZ3=((ZACCH)<<6) | ZACCL;

/**/

 for(j=n*1;j<(n*1+6);j++)

 {

 XACCH=sensor4[j];

 XACCL=sensor4[j+6];

 YACCH=sensor4[j+2];

 YACCL=sensor4[j+3];

 ZACCH=sensor4[j+4];

 ZACCL=sensor4[j+0];

 }

 aX4=((XACCH)<<6) | XACCL;

 aY4=((YACCH)<<6) | YACCL;

 aZ4=((ZACCH)<<6) | ZACCL;

 fprintf(p,"%d\t %d\t %d\t %d\t %d\t %d\t %d\t %d\t

%d\t %d\t %d\t %d\t %d\t %d\t

 02

%d\n",aX6,aY6,aZ6,aX2,aY2,aZ2,aX3,aY3,aZ3,aX4,aY4,aZ4,gX6[n

],gY6[n],gZ6[n]);

 n=n+6;

 }

 printf("data are successfully written to the

file\n ");

 fclose(p);

 return 6;

}

/******* MPU0606.h ********/
#ifndef _MPU1606_H_

#define _MPU1606_H_

#define ADDRESS_AD6_LOW 6x16 // address pin low (GND),

 default for InvenSense evaluation board

#define ADDRESS_AD6_HIGH 6x16 // address pin high (VCC)

#define SMPLRT_DIV 6x66

#define CONFIG 6x6A

#define MAG_CTRL 6x6A

#define GYRO_CONFIG 6x6B

#define ACCEL_CONFIG 6x6C

#define MOT_THR 6x6F

#define MOT_DUR 6x26

#define FIFO_EN 6x23

#define I2C_MST_STATUS 6x31

#define INT_PIN_CFG 6x34

#define INT_ENABLE 6x36

#define INT_STATUS 6x3A

#define ACCEL_XOUT_H 6x3B

#define ACCEL_XOUT_L 6x3C

#define ACCEL_YOUT_H 6x3D

#define ACCEL_YOUT_L 6x3E

#define ACCEL_ZOUT_H 6x3F

#define ACCEL_ZOUT_L 6x46

#define TEMP_OUT_H 6x46

#define TEMP_OUT_L 6x42

#define GYRO_XOUT_H 6x43

#define GYRO_XOUT_L 6x44

#define GYRO_YOUT_H 6x40

#define GYRO_YOUT_L 6x41

#define GYRO_ZOUT_H 6x44

#define GYRO_ZOUT_L 6x46

#define SIGNAL_PATH_RESET 6x16

#define MOT_DETECT_CTRL 6x16

#define USER_CTRL 6x1A

#define PWR_MGMT_6 6x1B

#define PWR_MGMT_2 6x1C

#define FIFO_R_W 6x44

#define WHO_AM_I 6x40

 00

//giving values to the registers, adding "V" at the end of

the register meaning "value"

#define SMPLRT_DIV_V 6x63 //so that sample

 rate=06Hz(ADC)

#define CONFIG_V 6x64 //Gyro output =6kHz, filter

 value=4, bandwidth=26 Hz

#define GYRO_CONFIG_V 6x66 //gyro scale +/-206 deg/sec

#define ACCEL_CONFIG_V 6x66 //accelerometer range =+/- 2g

#define FIFO_EN_V 6x66 //accel measurements

 are loaded into FIFO

#define SIGNAL_PATH_RESET_V 6x64 //reset gyro, acc, and

 temp sensors to their initial condition

#define USER_CTRL_V 6x46 //to enable FIFO buffer

#define PWR_MGMT_6_V 6x63 //to wake up the sensors

 set clock source to Z-axis gyro

#define PWR_MGMT_6_V_R 6x66 //reset the device

#define INT_ENABLE_V 6x66 //enable data ready

interrupt

#define PWR_MGMT_2_V_R 6x66 //reset standby

#define PWR_MGMT_2_V_X 6x64 //set gyro x axis in

standby mode

#define PWR_MGMT_2_V_Y 6x62 //set gyro y axis in

standby mode

#define PWR_MGMT_2_V_Z 6x66 //set gyro z axis in

standby mode

#define PWR_MGMT_2_V_All 6x64 //all in standby

#endif /* _MPU1606_H_ */

/*******I2C.h********/
#ifndef _i2c_H_

#define _i2c_H_

char buf[66]={6};

float data;

int i2c_file;

char filename[46];

//opening the i2c

int init_i2c(int addr,int num) {

/***/

 //communicate with bus 2

 if(num==2)

 {

 sprintf(filename,"/dev/i2c-2");

 if ((i2c_file = open(filename, O_RDWR)) < 6) {

 printf("open error!\n");

 exit(6);

 }

 if (ioctl(i2c_file,I2C_SLAVE,addr) < 6) {

 printf("address error!\n");

 exit(6);

 07

 }

 return 6;

 }

/**/

 //communicate with bus 3

 if(num==3)

 {

 sprintf(filename,"/dev/i2c-3");

 if ((i2c_file = open(filename, O_RDWR)) < 6) {

 printf("open error!\n");

 exit(6);

 }

 if (ioctl(i2c_file,I2C_SLAVE,addr) < 6) {

 printf("address error!\n");

 exit(6);

 }

 return 6;

 }

 return 6;

#endif

Appendix II.

MATLAB code

/******Accelerometers calibration******/

load data; %data is the raw data file from the sensors

Ax=data(:,6);

Ay=data(:,2);

Az=data(:,3);

Bx=data(:,4);

By=data(:,0);

Bz=data(:,1);

Cx=data(:,4);

Cy=data(:,6);

Cz=data(:,6);

Dx=data(:,66);

Dy=data(:,66);

Dz=data(:,62);

g=606660;

%create 4 measurmets

p6=666;

p2=3666;

A6=[mean(Ax(p6:p2)) mean(Ay(p6:p2)) mean(Az(p6:p2))];

B6=[mean(Bx(p6:p2)) mean(By(p6:p2)) mean(Bz(p6:p2))];

C6=[mean(Cx(p6:p2)) mean(Cy(p6:p2)) mean(Cz(p6:p2))];

 01

D6=[mean(Dx(p6:p2)) mean(Dy(p6:p2)) mean(Dz(p6:p2))];

p6=1666;

p2=6666;

A2=[mean(Ax(p6:p2)) mean(Ay(p6:p2)) mean(Az(p6:p2))];

B2=[mean(Bx(p6:p2)) mean(By(p6:p2)) mean(Bz(p6:p2))];

C2=[mean(Cx(p6:p2)) mean(Cy(p6:p2)) mean(Cz(p6:p2))];

D2=[mean(Dx(p6:p2)) mean(Dy(p6:p2)) mean(Dz(p6:p2))];

p6=66666;

p2=62666;

A3=[mean(Ax(p6:p2)) mean(Ay(p6:p2)) mean(Az(p6:p2))];

B3=[mean(Bx(p6:p2)) mean(By(p6:p2)) mean(Bz(p6:p2))];

C3=[mean(Cx(p6:p2)) mean(Cy(p6:p2)) mean(Cz(p6:p2))];

D3=[mean(Dx(p6:p2)) mean(Dy(p6:p2)) mean(Dz(p6:p2))];

p6=64166;

p2=61166;

A4=[mean(Ax(p6:p2)) mean(Ay(p6:p2)) mean(Az(p6:p2))];

B4=[mean(Bx(p6:p2)) mean(By(p6:p2)) mean(Bz(p6:p2))];

C4=[mean(Cx(p6:p2)) mean(Cy(p6:p2)) mean(Cz(p6:p2))];

D4=[mean(Dx(p6:p2)) mean(Dy(p6:p2)) mean(Dz(p6:p2))];

%we have four measurments we find MA MB MC MD ba bb bc bd

ax=6;

ay=6;

az=g;

O6=[ax ay az 6 6 6 6 6 6 6 6 6;

 6 6 6 ax ay az 6 6 6 6 6 6;

 6 6 6 6 6 6 ax ay az 6 6 6];

ax=6;

ay=g;

az=6;

O2=[ax ay az 6 6 6 6 6 6 6 6 6;

 6 6 6 ax ay az 6 6 6 6 6 6;

 6 6 6 6 6 6 ax ay az 6 6 6];

ax=g;

ay=6;

az=6;

O3=[ax ay az 6 6 6 6 6 6 6 6 6;

 6 6 6 ax ay az 6 6 6 6 6 6;

 6 6 6 6 6 6 ax ay az 6 6 6];

ax=6;

ay=6;

az=-g;

 07

O4=[ax ay az 6 6 6 6 6 6 6 6 6;

 6 6 6 ax ay az 6 6 6 6 6 6;

 6 6 6 6 6 6 ax ay az 6 6 6];

O=[O6;O2;O3;O4];

ZA=[A6';A2';A3';A4'];

THETA=inv(O'*O)*O'*ZA;

mA=[THETA(6) THETA(2) THETA(3);

 THETA(4) THETA(0) THETA(1);

 THETA(4) THETA(6) THETA(6)];

bA=[THETA(66); THETA(66); THETA(62)];

ZB=[B6';B2';B3';B4'];

THETA=inv(O'*O)*O'*ZB;

mB=[THETA(6) THETA(2) THETA(3);

 THETA(4) THETA(0) THETA(1);

 THETA(4) THETA(6) THETA(6)];

bB=[THETA(66); THETA(66); THETA(62)];

ZC=[C6';C2';C3';C4'];

THETA=inv(O'*O)*O'*ZC;

mC=[THETA(6) THETA(2) THETA(3);

 THETA(4) THETA(0) THETA(1);

 THETA(4) THETA(6) THETA(6)];

bC=[THETA(66);THETA(66);THETA(62)];

ZD=[D6';D2';D3';D4'];

THETA=inv(O'*O)*O'*ZD;

mD=[THETA(6) THETA(2) THETA(3);

 THETA(4) THETA(0) THETA(1);

 THETA(4) THETA(6) THETA(6)];

bD=[THETA(66); THETA(66);THETA(62)];

npts=length(Ax);

for i=6:npts

temp=inv(mA)*([Ax(i);Ay(i);Az(i)]- bA);

Axc(i,6)=temp(6);

Ayc(i,6)=temp(2);

Azc(i,6)=temp(3);

temp=inv(mB)*([Bx(i);By(i);Bz(i)]- bB);

Bxc(i,6)=temp(6);

Byc(i,6)=temp(2);

Bzc(i,6)=temp(3);

temp=inv(mC)*([Cx(i);Cy(i);Cz(i)]- bC);

 71

Cxc(i,6)=temp(6);

Cyc(i,6)=temp(2);

Czc(i,6)=temp(3);

temp=inv(mD)*([Dx(i);Dy(i);Dz(i)]- bD);

Dxc(i,6)=temp(6);

Dyc(i,6)=temp(2);

Dzc(i,6)=temp(3);

end

save Cal_data mA mB mC mD bA bB bC bD

/******Gyro calibration******/

clear all;

load gyro_calibration_fifo; % gyro_calibration_fifo is the

file name of raw data form the gyroscope

Gx6=gyro_calibration_fifo(:,6);

Gy6=gyro_calibration_fifo(:,2);

Gz6=gyro_calibration_fifo(:,3);

% Y up, cw

p6=66;

p2=2066;

A6=[mean(Gx6(p6:p2)) mean(Gy6(p6:p2)) mean(Gz6(p6:p2))];

% Y up, ccw

p6=2166;

p2=0666;

A2=[mean(Gx6(p6:p2)) mean(Gy6(p6:p2)) mean(Gz6(p6:p2))];

% X up, cw

p6=64666;

p2=61166;

A3=[mean(Gx6(p6:p2)) mean(Gy6(p6:p2)) mean(Gz6(p6:p2))];

% X up, ccw

p6=64666;

p2=66066;

A4=[mean(Gx6(p6:p2)) mean(Gy6(p6:p2)) mean(Gz6(p6:p2))];

% Z up, cw

p6=21166;

p2=36666;

A0=[mean(Gx6(p6:p2)) mean(Gy6(p6:p2)) mean(Gz6(p6:p2))];

% Z up, ccw

p6=36266;

p2=33666;

 70

A1=[mean(Gx6(p6:p2)) mean(Gy6(p6:p2)) mean(Gz6(p6:p2))];

wconst=66*(2*pi)/16;

%we have 1 measurments we find MAg MBg MCg MDg bag bbg bcg

bdg

gx=6;

gy=wconst;

gz=6;

O6=[gx gy gz 6 6 6 6 6 6 6 6 6;

 6 6 6 gx gy gz 6 6 6 6 6 6;

 6 6 6 6 6 6 gx gy gz 6 6 6];

gx=6;

gy=-wconst;

gz=6;

O2=[gx gy gz 6 6 6 6 6 6 6 6 6;

 6 6 6 gx gy gz 6 6 6 6 6 6;

 6 6 6 6 6 6 gx gy gz 6 6 6];

gx=wconst;

gy=6;

gz=6;

O3=[gx gy gz 6 6 6 6 6 6 6 6 6;

 6 6 6 gx gy gz 6 6 6 6 6 6;

 6 6 6 6 6 6 gx gy gz 6 6 6];

gx=-wconst;

gy=6;

gz=6;

O4=[gx gy gz 6 6 6 6 6 6 6 6 6;

 6 6 6 gx gy gz 6 6 6 6 6 6;

 6 6 6 6 6 6 gx gy gz 6 6 6];

gx=6;

gy=6;

gz=wconst;

O0=[gx gy gz 6 6 6 6 6 6 6 6 6;

 6 6 6 gx gy gz 6 6 6 6 6 6;

 6 6 6 6 6 6 gx gy gz 6 6 6];

gx=6;

gy=6;

gz=-wconst;

O1=[gx gy gz 6 6 6 6 6 6 6 6 6;

 6 6 6 gx gy gz 6 6 6 6 6 6;

 6 6 6 6 6 6 gx gy gz 6 6 6];

O=[O6;O2;O3;O4;O0;O1];

ZA=[A6';A2';A3';A4';A0';A1'];

 72

THETA=inv(O'*O)*O'*ZA;

mAg=[THETA(6) THETA(2) THETA(3);

 THETA(4) THETA(0) THETA(1);

 THETA(4) THETA(6) THETA(6)];

bAg=[THETA(66); THETA(66); THETA(62)];

% first sensor calibrated value, when rotated around z in

clockwise

% direction

for i=602466

temp=inv(mAg)*([Gx6(i);Gy6(i);Gz6(i)]- bAg);

Gxc6(i,6)=temp(6);

Gyc6(i,6)=temp(2);

Gzc6(i,6)=temp(3);

end

save Cal_data_gyro mAg bAg

List of references

0. Ezzaldeen Edwan, Stefan Knedlik, Otmar Loffeld," Constrained Angular

MotionEstimation in a Gyro-Free IMU" IEEE TRANSACTIONS ON AEROSPACE

AND ELECTRONIC SYSTEMS VOL. 17, NO. 0 JANUARY 2100

2. BeagleBoard System Reference Manual Rev C2, July 02, 2100.

1. Fernando Suárez Lainez," Implementation of Attitude and Heading Reference

System Using Beagleboard ", 21 Nov 2100.

1. MPU-0111 and MPU-0121 Product Specification Revision 1.2, 00 Nov 2100.

2. MPU-0111/MPU-0121 7-Axis Evaluation Board User Guide 0 Dec 2100.

0. Lucian Ioan Iozan, Martti Kirkko-Jaakkola, Jussi Collin, Jarmo Takala, Corneliu

Rusu," North Finding System Using a MEMS Gyroscope", the European Navigation

Conference on Global Navigation Satellite Systems, October 07-20, 2101,

Braunschweig, Germany.

7. Oliver J. Woodman, "An introduction to inertial navigation", August 2117.

1. Yuan Long Wei, Min Cheol Lee, "Mobile Robot Autonomous Navigation Using

MEMS Gyro North Finding Method in Global Urban System", 2100 IEEE

International Conference on Mechatronics and Automation August 7 - 01, Beijing,

China.

7. Dr. Walter Stockwell,"" Bias Stability Measurement: Allan Variance".

 71

01. Dan Simon, "Kalman Filtering".

00. Cornell University subject MI01,"Kalman Filter Applications", September 2111.

02. JackW Judy, "Microelectromechanical systems (MEMS): fabrication, design

 and applications",20 November 2110.

01. Randall K. Curey, Michael E. Ash, Leroy O. Thielman, Cleon H. Barker,"Proposed

IEEE Inertial System Terminology Standard and Other Inertial Sensor Standards".

01. IEEE Standard Specification Format Guide and Test Procedure for Linear, Single-

Axis, Nongyroscopic Accelerometers, 2111.

02. Navid Yazdi, Farrohk Ayazi, and Khalil Najafi, "Micromachined Inertial Sensors",

Proceedings of the IEEE, VOL. 10, NO. 1, AUGUST 0771.

00. Claudia C. Meruane Naranjo, "Analysis and Modeling of MEMS based Inertial

Sensors", Stockholm 2111.

07. M.A Hopcroft." Calculates standard Allan Deviation (ADEV) of a time domain

signals."MATLAB file exchange, 11 Nov 2101.WEB.01.11.2102

<http://www.mathworks.com/matlabcentral/fileexchange/01210-allan>.

http://www.mathworks.com/matlabcentral/fileexchange/13246-allan

