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ABSTRACT 

Planar bar-and-joint mechanisms with one degree-of-freedom are widely used in 

deployable structures and machines. Such mechanisms are designed to undergo a 

specific motion, which can be described mathematically by plotting out the 

compatibility conditions, resulting in a curve called the compatibility path. It has been 

observed that compatibility paths can develop singularities similar to that of equilibrium 

paths of elastic structures. 

This dissertation studies singularities occurring in compatibility paths with the aid of 

knowledge in the theory of structural stability. An analogy is set up between the 

equilibrium path of elastic structures and the compatibility path of mechanisms with a 

single degree-of-freedom incorporating different types of bifurcation, effects of 

imperfections and detection of singularities. It is shown that the fundamentally distinct 

critical points such as limit points and bifurcation points can also appear in the 

compatibility path. Methods used to study singularities for compatibility conditions of 

mechanisms and equilibrium of structures are unified so that they can be used for both 

cases. A formulation of potential energy for mechanisms is also proposed in analogy 

with the potential energy function used in structural analysis. 

Further analysis of the mechanisms is carried out to demonstrate that singularities of 

compatibility paths can also be dealt with by elementary catastrophe theory similar to 

stability theory. A relationship is established between the mathematical formulation of 

different compatibility bifurcations and the canonical forms of catastrophe types. 

Examples of mechanisms demonstrating the existence of cuspoids of the compatibility 

conditions are given. An overall classification of the compatibility paths is also 

proposed.  

Keywords: bifurcation, catastrophe types, compatibility condition, compatibility path, 

elementary catastrophe theory, equilibrium path, imperfection, Jacobian matrix, 

mechanism with one degree-of-freedom, potential energy 
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1.1 Mechanisms in engineering 

The Oxford Advanced Learner’s Dictionary (2000) defines the word mechanism as a set 

of moving parts in a machine or as a method or a system for achieving something. In 

engineering science, a mechanism is usually regarded as a physical system or a 

machine, which is an assemblage of working parts designed to produce some required 

effect (Hunt, 1978). Mechanisms are means of transmitting, controlling or constraining 

relative movements. In mechanical engineering other terms, such as linkage, etc. are 

also often used to refer to such machines. 

However, this word is also used to indicate the mobilization of a device or an 

assembly of mechanical parts. It represents the action or a way a machine exerts its 

capability of motion. This interpretation of the word is used when the mobility of a 

structural assembly is considered. 

Both technical aspects of the word are frequently used in engineering scientific 

publications, and, therefore in this dissertation we use the word in accordance with 

literature. 

Mechanisms can exist in various structural forms; one group of them consists of rigid 

bodies and joints. A rigid body does not change its shape or size: the dimensions of the 

original shape remain invariable. This feature can be described as the distance of any 

two points and angles formed by any three points within the body remains unchanged. 

Consequently, the position of any point is determined once the position of the body is 

known. Though a completely rigid body does not exist, many engineering components 

are rigid to the extent that deformations are negligible in comparison with their relative 

movements. In general a rigid body may have an arbitrary two-dimensional or three-

dimensional shape, but engineering applications can often be modelled by one-

dimensional elements, e.g. bars. 

Rigid bodies can be connected to each other by joints. A joint is usually formed by a 

simple contact. Though such a contact can be in the form of a flexible band, spring or 

other elastic components, the most elementary joint between two bodies is formed by 
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connecting them together at one point ensuring that the single point of contact is 

continuously maintained during relative movement. This joint enables relative rotation 

around it but no relative translation of the rigid bodies, and is called a pin joint. 

This dissertation is concerned only with planar mechanisms consisting of completely 

rigid bars and frictionless pin joints. Such mechanisms are also commonly called 

linkages or, more specifically, bar-assemblies. 

1.2 Rigidity and mobility of bar-assemblies 

Bar-assemblies play an important role in engineering. Many problems in structural 

engineering are modelled by trusses, consisting of bars and frictionless pin joints, e.g. 

steel truss bridges, some roof structures, electrical pylons, etc. In trusses sufficient 

structural rigidity and strength are of prime concern as they are designed to meet the 

requirements of ultimate, serviceability and limit states. Consequently, bars are treated 

as deformable members, and stresses and strains are obtained due to the elastic 

deformations. 

On the other hand, a bar-assembly as a mechanism is expected to perform some 

specified motions. The deformation of bars is far smaller than the displacements and 

therefore does not affect the motion. Thus it is appropriate to consider bars as rigid 

bodies while studying the mobility of a bar-assembly. The way how the rigid bodies are 

assembled is mathematically described by compatibility conditions. 

A general bar-and-joint assembly is called rigid if it is not kinematically 

indeterminate. In structural engineering the so-called Maxwell's rule is a well-known 

necessary condition for kinematic determinacy (Maxwell, 1890; Calladine, 1978): a 

space truss having b straight bars and j frictionless pin joints is, in general, rigid if 

 63 −≥ jb . (1.1) 
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If 

 63 −< jb , (1.2) 

the structure is kinematically indeterminate. However, even though satisfying (1.1), a 

bar-assembly can be kinematically indeterminate by having a special geometry or 

topology. 

A kinematically indeterminate structural assembly has mechanisms associated with 

it. They may be finite mechanisms, i.e. they extend into finite motions without 

deformations in the elements. But the lack of rigidity may refer to infinitesimal 

mechanisms, which allow only infinitesimal displacements without deformations. 

However, the fulfilment of the Maxwell’s rule does not correlate closely with 

kinematic determinacy as one can find structurally rigid bar-assemblies, infinitesimal 

and finite mechanisms complying with this condition while there are also examples of 

these types which are predicted as kinematically indeterminate by the condition. 

1.3 Singularities 

Another problem may arise about finite mechanisms which are known to have a single 

kinematic degree-of-freedom by the Maxwell’s rule. In a general case a finite 

mechanism undergoes a specific motion. This motion can be mathematically prescribed 

by compatibility conditions and plotted, resulting in a curve called a compatibility path. 

However, the mobilization of some particular finite mechanisms may lead to special 

configurations where the degree of kinematic indeterminacy increases. The bar-

assembly is then at a point of bifurcation (Tarnai, 1984, 1990). At such points the 

number of infinitesimal degrees-of-freedom increases, i.e. the possibility of motion in a 

number of different directions arises leading to branches in the compatibility path, 

though the structural assembly is a single-parameter finite mechanism. 
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It has been observed that, in a way, this phenomenon is similar to the buckling of 

elastic structures in stability theory. It is known that certain structures under a critical 

load lose their stability and can change equilibrium shape. At that position the 

relationship between the load and the displacement is not uniquely determined, hence 

the structure is at a point of bifurcation. 

Bifurcations are parts of a large group of phenomena. The mathematical approach to 

natural phenomena usually requires governing equations. Generally they are nonlinear, 

contain variables, constants, time and space coordinates, derivatives of the variables, 

integral forms, etc. (Gilmore, 1981). In many physical problems they can be greatly 

simplified, resulting in a so-called dynamical system 

 ( ) 0;; =−= tcf
dt

d
F lji

i
i ψψ

 (1.3) 

where iψ , lc  and t  denote the variables, parameters and time, respectively. In a 

dynamical system only the first time derivatives remain. If functions if  are independent 

of time, the problem is called an autonomous dynamical system. The study of dynamic 

bifurcation has made clear the mechanism of instability and chaos of dynamical systems 

(Ikeda and Murota, 2002). If the time derivatives are also neglected in (1.3), a static 

problem (or in a special case, a static bifurcation problem) is obtained. This formulation 

applies to the kinematics of mechanisms. 

A special case occurs if functions if  are obtained as the gradient of a potential 

function. This model applies to the stability theory of elastic structures with 

conservative forces. 

Bifurcations of compatibility, equilibrium, etc. are singularities of ordinary smooth 

phenomena. The mathematical formulation of most phenomena in classical physics 

exhibits smooth behaviour, i.e. the governing equations react with small changes to 

small variations of the external factors. Hence these systems are described by 

differential equations, e.g. the motion of planets, vibrating strings, heat conduction, etc. 

However, this does not apply to several phenomena when a small pertubation of the 
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system causes sudden ‘jumps’. Such phenomena and the related functions were given 

the name ‘catastrophe’ by the French mathematican René Thom (Thom, 1972, 1975). 

Though he proposed his idea for biology, the theory is actually able to cover a much 

broader range of disciplines in science, engineering, economics. For instance, it proves 

an efficient tool in the stability theory as catastrophe theory provides a classification of 

singularities of the equilibrium paths. 

1.4 Objectives and layout 

Although a great deal of research has been conducted to understand and mathematically 

describe bifurcation phenomena in structural stability, little has been done in kinematics 

of mechanisms. The aim of this dissertation is to analyse the bifurcation of planar finite 

mechanisms, including the use of catastrophe theory. An analogy is to be created 

between kinematics of mechanisms and stability of structures based on the known 

bifurcation phenomena which are possible in both cases. The analogy enables the 

application of well-established methods in structural stability to kinematics of 

mechanisms. Several aspects of this analogy are examined and various techniques are 

presented, which are demonstrated throughout the dissertation by a set of mechanism 

examples: a kite-shaped four-bar linkage, a square-shaped four-bar linkage, a six-bar 

linkage, and a special A-shaped linkage. The outline of the dissertation is as follows. 

Chapter 2 summarizes the previous studies that are relevant to the topic of this 

dissertation. They include bifurcation of compatibility paths of mechanisms, other 

bifurcation phenomena in kinematics of mechanisms and catastrophe theory. It also 

gives a brief review on stability theory with the illustration of the fundamental 

bifurcation modes of equilibrium paths of structures. 

An analogy between bifurcation phenomena in stability theory and compatibility of 

mechanisms is established in Chapter 3. Following the fundamental modes of 

equilibrium bifurcations, the analogous phenomena for mechanisms are presented. 
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Bifurcations of compatibility paths of mechanisms are shown and imperfection-

sensitivity curves are determined. The analogy is extended to cover all types of 

bifurcations and is demonstrated by examples of mechanisms. A classification of the 

compatibility paths is proposed. Moreover, Chapter 3 examines a new dimension of the 

analogy between kinematics of mechanisms and stability of structures: the concept of 

potential functions. Various possible counterparts to the potential energy function of 

elastic structures used in the stability theory are proposed for use in kinematics of 

mechanisms. 

Chapter 4 extends the analogy further to the analysis of mechanisms. Various 

analytical approaches are presented for the identification of bifurcation points occurring 

on compatibility paths. The methods are based on the first- and second-order analysis of 

the constraint equations of the systems. Analogous behaviour for structures is shown in 

comparison with those of mechanisms. Mechanism examples are given to demonstrate 

the applicability of these methods and also their limitations. This is followed by 

numerical methods aimed to cope with the limitations, and to provide an alternative 

mathematical approach for the analysis of the singularities of compatibility paths. These 

methods are applied to the mechanisms introduced in the previous chapters. An 

algorithm is also presented to approximate numerically the graphs of compatibility 

paths. 

Chapter 5 is dedicated to the application of catastrophe theory to the kinematics of 

mechanisms. It starts with a discussion of problems encountered in the previous 

chapters, followed by detailed examination of mechanisms in view of catastrophe 

theory. A formulation of the problem is proposed and discussed in detail with the aid of 

examples. The approach is based on the analogy between compatibility and equilibrium. 

A study regarding the creation of mechanisms that exhibit higher-order types of 

catastrophe is also given. The possibility of the assembly of more complicated linkages 

is examined followed by the analysis of an infinitely degenerate case. Several questions 

related to the mathematical formulation of the problem are also discussed in this 

chapter. 
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Chapter 6 gives a summary of the achievements of this dissertation and a number of 

directions for future research, which concludes the dissertation. 
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2.1 The stability theory of structures 

2.1.1 Equilibrium equations and equilibrium paths 

It has been mentioned in Section 1.3 that bifurcations of compatibility paths of 

mechanisms can be compared to those of equilibrium paths of elastic structures (Tarnai, 

1999). As our goal is to create a complete analogy between the two subjects, it is 

important to review the achievements in the theory of structural stability. 

Unlike the kinematics of mechanisms, the theory of elastic stability has been very 

well developed. It is known in structural mechanics that structures may lose their 

stability under certain conditions. Euler’s work (1744) on stability dates back to the mid 

18th century and was later followed by others. A major contribution to this field was 

Koiter’s (1945) dissertation on a nonlinear bifurcation theory for continuous elastic 

systems. 

Many structural systems can be described by introducing generalized coordinates. A 

great deal of work has been done in general nonlinear theory of elastic stability in terms 

of generalized coordinates (Thompson, 1963). A good summary of elastic stability is 

given by Thompson and Hunt (1973, 1984). In general, the relationship between the 

generalized coordinates and the load parameters of a structure is represented by 

equilibrium equations, which can be plotted resulting in equilibrium paths. Stability 

theory focuses on the study of critical points of these paths. Figure 2.1 reproduces the 

Figure 2.1: Equilibrium paths of structures with fundamental types of critical points (thick lines) and
paths of the disturbed systems (thin lines). (a) Limit point. (b) Asymmetric bifurcation. (c) Stable

symmetric bifurcation. (d) Unstable symmetric bifurcation.

(a) (b) (c) (d)
Q

Λ Λ Λ Λ

Q Q Q
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four well-known modes of instability associated with distinct critical points in the 

coordinate system of a generalized coordinate (Q) and and a load parameter (Λ): the 

limit point, the asymmetric bifurcation, the stable symmetric bifurcation, and the 

unstable symmetric bifurcation. A comprehensive review article is given by Thompson 

(1969). 

2.1.2 Potential energy of structures 

In solid mechanics potential energy is defined as the work done by external and internal 

forces acting on a solid body on its displacements and deformations (Kaliszky, 1990). 

The external forces are assumed to be conservative. The potential energy is always 

given with respect to a reference position, frequently the undeformed state of a solid 

body. The external potential is the work done by the external forces on the 

corresponding displacement of the body. The internal potential is the amount of work to 

produce deformations due to stresses, which is also called the strain energy. 

Geometrically possible displacement-deformation systems of a linearly elastic body 

may correspond to different values of the potential energy. The actual system at which 

the body is in equilibrium is obtained when the total potential energy is stationary. 

In the case of structural systems consisting of an elastic continuum under 

concentrated and distributed loads, in general they would have infinite degrees-of-

freedom (Gáspár, 1999). However, assumptions are usually made concerning the 

geometry of the structure, the mechanical behaviour, the loads, etc., so that a finite 

number of generalized coordinates associated with predefined mode shapes are 

sufficient to describe deformations. At an equilibrium position 

 ( ) 0
Q

pQv =
∂

Π∂= ,  (2.1) 

where Π  denotes the potential energy function and Q and p are the vectors of the 

generalized coordinates and parameters, respectively. The stability of the equilibrium is 

assessed by the Hessian matrix: 
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 ( )
2

2 ,
Q

pQH
∂
Π∂= . (2.2) 

An equilibrium position is stable if H is positive definite, i.e. all eigenvalues are 

positive. The existence of negative eigenvalues implies that the equilibrium is unstable. 

When H is positive semidefinite, the equilibrium is critical and further analysis is 

required (Thompson and Hunt, 1984). 

Some structures can be described by a single variable without any loss of generality. 

Accordingly, v in (2.1) has one element only. The second-order derivative, H has also 

one element. If it is positive, negative or zero, the equilibrium is stable, unstable or 

critical, respectively. In special cases neutral equilibrium points are possible but they 

will become stable or unstable when the system is disturbed. An example of neutral 

equilibrium is given in Section 2.2.4 where the load is constant, and therefore 

independent of the displacement. 

The analysis presented in this section, which aims to determine the critical points of 

an equilibrium path, is called the linear eigenvalue analysis (Thompson and Hunt, 

1984). 

2.2 Bifurcations in the stability theory of structures 

Three common bifurcation modes of equilibrium paths, shown in Figure 2.1(b)-(d), are 

discussed in more details in the following, as they represent one of the foundations of 

the analogy, and will be referred to frequently in this dissertation. Though the principle 

of the stability theory applies to elastic continuum systems as well, here we choose 

rigid-body models with finite generalized coordinates for simplicity (Koiter, 1945). 

2.2.1 Stable symmetric bifurcation 

Consider a simple structure consisting of a rigid bar in a vertical position supported by 

an elastic rotational spring shown in Figure 2.2(a). A vertical force P is applied at the 
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tip of the bar. If the bar moves sideways by an angle φ , the equilibrium equation of the 

structure can be written as 

 0sin =+− φφ kPL  (2.3) 

where L and k denotes the length of the bar and the stiffness of the spring, respectively. 

When φ  is zero, this relationship is shown by vertical straight thick lines in the 

diagram of equilibrium paths in Figure 2.2(b). The equilibrium is stable if the load is 

small but becomes unstable if the load exceeds a critical value: 

 
L
kP =cr . (2.4) 

This equilibrium path is denoted by the dashed line. The vertical path is called the 

primary path. 

At the critical load a secondary path appears, as static equilibrium is possible with a 

non-zero φ . The new equilibrium positions are stable and are represented by a thick 

curved line in Figure 2.2(b). Note that this path has axis of symmetry and increasing 

deformations, i.e. φ , is associated with increased loading. Hence this bifurcation type is 

also called the stable symmetric bifurcation. 

Figure 2.2: An example of the stable symmetric bifurcation. (a) A hinged cantilever bar supported by
an elastic rotational spring under vertical load. (b) Equilibrium paths. (c) Imperfection-sensitivity.
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The equilibrium equation and the critical load could also have been derived from the 

potential energy of the structure. An analysis of the potential energy function is given 

later in Section 2.3.2. 

Imperfections of the system can also be analysed. Suppose that the perfect geometry 

is disturbed as the unloaded bar has a small initial inclination ε due to the imperfection 

of the spring, as shown in Figure 2.2(a). Equation (2.3) then becomes 

 ( ) 0sin =−+− εφφ kPL . (2.5) 

The imperfect equilibrium paths are denoted by thin lines in Figure 2.2(b), whereas 

continuous and dashed lines refer to stable and unstable equilibrium, respectively. Note 

that no bifurcation occurs and the new paths are located so that any one of the imperfect 

paths is in the neighbourhood of one of the original ones. Curves that belong to the 

same imperfection are located diagonally to the original bifurcation point, e.g. for 0>ε  

they are in the lower right and the upper left quadrant of the graph. The former is 

entirely stable, referring to increasing deformations when P increases. On the other 

hand, the other path has a limit point where the stable state turns to an unstable one. 

Similar conclusions can be drawn for negative imperfections, i.e. to the left of the axis. 

At the limit point of the equilibrium path 0=∂∂ φP , and the load has an extremum. 

From equation (2.5) an approximate formula for the deflected critical shape can be 

derived, which yields the relationship between the critical force and the imperfection: 

 ( ) 





 +≈ 323

2
11 ε

L
kPcr . (2.6) 

This relationship is called the imperfection-sensitivity and is schematically plotted in 

Figure 2.2(c). 

2.2.2 Unstable symmetric bifurcation 

The unstable symmetric bifurcation can be illustrated with a simple rigid bar supported 

by an elastic horizontal spring shown in Figure 2.3(a). In a similar way to the previous 
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example a vertical force P is applied on the top of the bar and φ denotes the angle 

between the inclined and the original position of the bar. Assume an initial imperfection 

ε  can be applied. The equilibrium equation is formulated as 

 ( ) 0sinsincossin =−− εφφφ kLP  (2.7) 

where L and k denote the length of the bar and the stiffness of the spring, respectively. 

The primary and secondary equilibrium paths are obtained when 0=ε  and they are 

shown by thick lines in Figure 2.3(b). The primary equilibrium path is stable and turns 

unstable at the critical value of the load 

 kLP =cr . (2.8) 

The secondary equilibrium path is again symmetric. The equilibrium is unstable as the 

postbuckling load-bearing capacity of the structure falls and thus this type of bifurcation 

is called the unstable symmetric bifurcation. The structure is sensitive to imperfections. 

The equilibrium paths for 0≠ε  are also plotted in Figure 2.3(b) with the same 

notation as in Figure 2.2. At the limit points the exact and the approximate value of the 

critical load is 

Figure 2.3: Unstable symmetric bifurcation. (a) Hinged cantilever bar supported by an elastic
horizontal spring, under vertical load. (b) Equilibrium paths. (c) Imperfection-sensitivity.
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 ( )( ) 





 −≈−= 322332

2
31sin1 εε kLkLPcr . (2.9) 

Thompson and Hunt (1973) used the sine of the actual and initial inclination angles as 

parameters. As εsin  is approximated linearly by ε  for small ε , the approximate 

formula (2.9) is valid for both kinds of notations. 

2.2.3 Asymmetric bifurcation 

The third fundamental bifurcation mode is the asymmetric bifurcation. A simple 

example associated with this mode is shown in Figure 2.4(a), where the spring is at an 

inclined position with an angle 4π . Due to the geometry of the structure now the 

equilibrium equation is a more complicated formula: 

 0
sin1

coscoscossin 22 =
+

−++−
φ

φφφεφ kLkLPPL . (2.10) 

The primary equilibrium path shows behaviour similar to the previous cases and the 

critical force is given as: 

Figure 2.4: Asymmetric bifurcation. (a) Hinged cantilever bar supported by an inclined elastic spring,
under vertical load. (b) Equilibrium paths. (c) Imperfection-sensitivity.
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2cr

kLP =  (2.11) 

where L is the length of the bar, as well as the distance between the two supported 

nodes, and k denotes the stiffness of the spring. The two branches of the secondary 

equilibrium path are now asymmetric in position, see Figure 2.4(b). 

The imperfect equilibrium paths are shown in Figure 2.4(b) with the same notations 

as before. For positive ε  the paths have limit points while for a negative one no 

stability problem occurs. The imperfection-sensitivity curve is plotted in Figure 2.4(c) 

and approximated as 

 ( )( )2131
2

ε±≈ kLPcr . (2.12) 

2.2.4 Degenerate symmetric bifurcation 

It is important to mention here that cases for an infinitely degenerate bifurcation were 

also found previously (Gáspár, 1984, 1999 and Tarnai, 2002) in addition to the three 

fundamental bifurcation modes. Consider a structure supported by a fixed hinge and two 

elastic springs of the same stiffness (Gáspár, 1984), as shown in Figure 2.5(a). 

Figure 2.5(b) shows equilibrium paths. Solid, dashed and dotted heavy lines denote 

Figure 2.5: Infinitely degenerate symmetric bifurcation. (a) Hinged bar supported by two elastic
springs, under vertical load. (b) Equilibrium paths.
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stable, unstable and neutral equilibrium states, respectively. The primary equilibrium 

path, shown by thick vertical lines, corresponds to the undeformed original position. 

The secondary path, shown by thick dotted line, which intersects the other, is now a 

straight line parallel to axis φ at the critical force, i.e. the structure is in the equilibrium 

state at any arbitrary deformation under a constant load. 

Introduce now an imperfection to the system. Assume that the load is offset by a 

small distance 1ε . If 01 >ε , the imperfect equilibrium paths are shown by thin lines in 

Figure 2.5(b). Note that none of the paths has limit points. In case of a negative ε , the 

equilibrium paths are mirror images of the positive ones to the axis P. 

2.3 Catastrophe theory 

The linear eigenvalue analysis determines the critical loads with the aid of the second 

variation of the potential function. It provides no information about the post-buckling 

behaviour of the structure, which is controlled by higher variations of the potential 

function about the critical state. Furthermore, it has been a general viewpoint in 

engineering to examine instabilities in terms of a single control parameter, usually the 

load, and hence obtain equilibrium paths in the space of the generalized coordinates and 

the load parameter. Secondary parameters, usually imperfections, are introduced 

afterwards, resulting in a perturbed set of equilibrium paths (Thompson and Hunt, 

1984). Contrary to this bifurcational view, it has been realized that all parameters should 

be treated equally leading to equilibrium surfaces. This approach received further 

attention in the development of the catastrophe theory and hence it is usually called the 

catastrophe theory view. The difference between the two is illustrated in Figure 2.6 for 

the unstable symmetric point of bifurcation. Figure 2.6(a) shows the equilibrium paths 

in the coordinate system of the load parameter λ and the generalized coordinate Q. 

Imperfect paths are calculated in terms of an imperfection parameter ε. The catastrophe 

theory view, on the other hand, does not require the specific definition of the load 
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parameter and the imperfection but maintains the general orientation of the equilibrium 

surface in the parameter space ( )21, ΛΛ , see Figure 2.6(b). 

The study of elastic stability gained a new dimension by the development of a new 

mathematical tool, catastrophe theory in the 1970's. Catastrophe theory was introduced 

by the French mathematician René Thom who gave the name ‘catastrophe’ to 

phenomena that exhibit sudden changes due to small perturbations of the system. The 

techniques developed by him became known through his book Stabilité Structurelle et 

Morphogénèse (1972, 1975). In his book, Thom proposed a theorem, which classifies 

families of functions with up to five parameters. Mathematical proof was provided by 

Zeeman (Trotman and Zeeman, 1976; Zeeman, 1977) and Arnol’d (1972) gave the 

elementary catastrophe types their names and systematic codes as now known in the 

literature. 

One of the various applications of catastrophe theory, which is important for our 

case, is in the stability theory of structures. The analysis is done with the help of the 

total potential energy function of the structure. Various catastrophe types have been 

identified and analysed (Hunt, 1981; Hansen and Hui, 1977; Hui and Hansen, 1980; 

Hunt and Williams, 1984ab; Thompson and Gáspár, 1977; Thompson and Supple, 

Figure 2.6: (a) The bifurcational view and (b) the catastrophe view of a cusp catastrophe at an
unstable symmetric point of bifurcation.
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1973; Gáspár, 1977). A good summarizing work on the subject is given by Gáspár 

(1999). 

2.3.1 Thom’s theorem 

The term catastrophe in mathematics, unlike the usual meaning as ‘disaster’, means that 

smooth alterations in the controlling variables cause sudden changes in the phenomenon 

(Gáspár, 1999; Poston and Stewart, 1978). In mathematical terms it means that small 

changes in the parameters of a system causes a sudden change in the function that 

describes the phenomenon. 

Natural phenomena are usually described by governing equations. Generally the 

equations are nonlinear, containing variables, constants, time and space coordinates, 

time and space derivatives of the variables, integral forms, etc. (Gilmore, 1981). In 

many cases they can be simplified by assuming that there are no integrals, and the 

problem is described by a set of partial nonlinear differential equations. Further 

assumptions can be made on the omission of the space coordinates and the space 

derivatives of the variables. 

Another simplification step keeps only the first time derivatives and assumes a 

special form. This problem is called a dynamical system and the equations are written as 

 ( ) 0;; =−= tcf
dt

d
F lji

i
i ψψ

 (2.13) 

where iψ , lc  and t  denote the variables, parameters and time, respectively. If functions 

if  are independent of time, the problem is called an autonomous dynamical system. If 

the time derivatives are also neglected in (2.13), a static bifurcation problem is obtained. 

This formulation applies to the compatibility of mechanisms: 

 ( ) 0; =−= ljii cfF ψ  (2.14) 

A special case occurs if functions if  are obtained as the gradient of a potential 

function V. This model applies to the stability theory of elastic structures with 
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conservative forces. Such systems are called the equilibria of gradient systems, which is 

the subject of elementary catastrophe theory: 

 
( )

rlnji
cV

i

lj ≤≤≤≤=
∂

∂
1;,1,0

,
ψ

ψ
 (2.15) 

where the notations are the same as in (2.13). 

Equation (2.15) states that the gradient of the n-variable, r-parameter function V 

equals zero. The stability properties of the equilibrium may be determined from the 
Hessian matrix ijV . If the matrix is not singular, then after a suitable diffeomorphism, a 

locally reversible smooth map, the potential can be locally written in the Morse 

canonical form (Morse, 1931): 

 22
1

22
1 nii yyyyV +++−−−≈ + KK  (2.16) 

where y’s are a new set of variables related to ψ ’s. If the Hessian is singular, then some 

of the eigenvalues vanish and the potential can be split to a Morse and a non-Morse part 

due to Thom Splitting Lemma (Gromoll and Meyer, 1969). However, it is still possible 

to find a canonical form for the non-Morse part of the potential. 

Consider an n-variable single-value function ( )xf . It has a critical point at 0x  if the 

first-order derivatives of ( )xf  are all zero. If the Hessian matrix in non-singular, the 

point is a non-degenerate critical point1. The function ( )xf  is structurally stable if, for 

all sufficiently small smooth functions ( )xp , f  and pf +  have the same numbers and 

same types of critical points, or in other words, f  and pf +  are equivalent after a 

suitable translation of the origin. 

Smooth functions are typically structurally stable but critical points are more 

interesting to us. Thom’s theorem classifies the typical singularities of families of r-

parameter n-variable functions f :  with less then 6 parameters. 

                                                            
1 The mathematical definition of a critical point refers to the vanishing of the first derivatives, which 
corresponds to equilibrium in engineering terms. Degenerate critical points in the literature of 
mathematics refers to critical points of equilibrium in engineering (Gilmore, 1981). 
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Thom’s theorem: Typically an r-parameter family of smooth functions , for any 

n  and for 5≤r , is structurally stable and is equivalent around any point to one of the 

forms given in Table 2.1. 

The forms are all catastrophes except the first two, that are not catastrophe forms 

since they do not change with t’s. The second formula is the Morse form. The rest are 

canonical forms of catastrophes consisting of the catastrophe germ and the universal 

Table 2.1: Classification of families of functions by Thom’s theorem

No. Canonical form Name

1. 1u

2. ( )niuuuu nii ≤≤−−−++ + 022
1

22
1 KK

3. ( )Mutu ++ 11
3
1 the fold (A2)

4. ( ) ( )Mututu +++± 11
2
12

4
1 the cusp (A3)

5. ( )Mutututu ++++ 11
2
12

3
13

5
1 the swallowtail (A4)

6. ( ) ( )Mututututu +++++± 11
2
12

3
13

4
14

6
1 the butterfly (A5)

7. ( )Mutututututu ++++++ 11
2
12

3
13

4
14

5
15

7
1 the wigwam (A6)

8. ( )Nutututuuu ++++− 1122
2
13

3
22

2
1 the elliptic umbilic (D4

-)

9. ( )Nutututuuu +++++ 1122
2
13

3
22

2
1 the hyperbolic umbilic

(D4
+)

10. ( ) ( )Nututututuuu ++++++± 1122
2
13

2
24

4
22

2
1 the parabolic umbilic

(D5)

11. ( )Nutututututuuu ++++++− 1122
2
13

2
24

3
25

5
22

2
1 the second elliptic

umbilic (D6
-)

12. ( )Nutututututuuu +++++++ 1122
2
13

2
24

3
25

5
22

2
1 the second hyperbolic

umbilic (D6
+)

13. ( ) ( )Nututuututuutuu +++++++± 1122213
2
24

2
215

4
2

3
1 the symbolic umbilic

(E6)

where ( )∈nuu ,,1 K , ( )∈rtt ,,1 K  and

( ) ( )niuuuuM nii ≤≤−−−++= + 122
1

22
2 KK

( ) ( )niuuuuN nii ≤≤−−−++= + 222
1

22
3 KK .
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unfolding. They are either cuspoid catastrophes with one active variable 1u  (3 to 7) or 

umbilic catastrophes with two active variables 1u  and 2u  (8 to 13). They are usually 

referred to by the names and the symbols given in the last column of Table 2.1 

(Arnol’d, 1972). Note that four of the forms in the list given by Thom, (4, 6, 10 and 13) 

have double signs. The positive sign corresponds to the standard form while the 

negative to the dual form. 

It should be pointed out that in Table 2.1, the canonical form (regarding only the 

active part of the function) is a function with one or two variables: ( )K,; 11 tuf  or 

( )K,;, 121 tuuf . At the critical point the gradient of f  is zero: 0=∂∂ iuf , which 

defines the equilibrium surface. The catastrophe occurs when the Hessian matrix 

[ ]ji uuf ∂∂∂ 2  becomes singular. Eliminating the variable(s) from these two equations, 

the bifurcation set is obtained in terms of the parameters. The bifurcation set divides the 

parameter space to regions within which the same number and type of equilibria occur. 

Catastrophe occurs on the borders between the regions. Figure 2.7 illustrates three 

cuspoid types: the fold, the cusp and the swallowtail. The equilibrium of the fold and 

the cusp can be plotted in the coordinate systems ( )11 , tu  and ( )211 ,, ttu , respectively. 

The equilibrium of the swallowtail requires a four-dimensional space though it is 

possible to plot the bifurcation set, which consists of surfaces in the coordinate system 

( )321 ,, ttt . A detailed study of this complicated type is shown in Chapter 5. 

Figure 2.7: (a) Equilibrium of the fold. (b) Equilibrium of the cusp. (c) Bifurcation set of the
swallowtail.
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2.3.2 Application of elementary catastrophe theory in stability theory 

Catastrophe theory provides a new approach to examine the behaviour of structures 

involved in stability problems. In order to apply the theory to a structure, several steps 

need to be taken (Gáspár, 1999): 

1. In reality structures have infinite degrees-of-freedom but for our analysis a discrete 

model is required. The deformations are approximated by a linear combination of 

some basic functions resulting in a finite number of generalized coordinates. 

2. The total potential energy function is formulated in terms of the generalized 

coordinates and the load parameter. In the critical state the gradient of the function 

becomes zero and the Hessian matrix is singular. 

3. The potential energy function is extended by including imperfections. The Taylor 

series expansion is used at the critical point and local variables and parameters are 

introduced. It is sufficient to deal with the active part of the function, which is 

obtained by omitting the Morse part. 

4. A suitable linear transformation is applied so that the potential energy function 

matches the canonical form of the corresponding catastrophe type. 

5. Substituting this transformation into the equations of the catastrophe, gives the 

equilibrium surface, equilibrium path and the imperfection-sensitivity surface. 

Now let us analyse the three examples shown in Section 2.2 in this way. All three 

structures are discrete models and the potential energy function and the critical state 

have already been determined previously (Step 1 and 2). Imperfections are introduced 

as the eccentricity of the location of the vertical force applied on the structure. It is 

regarded as positive if the force is shifted to right off the axis and negative if to left. The 

following steps are applied to the structures individually. 

First let us examine the structure in Figure 2.2(a). The extended potential energy 

function now is: 
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 ( ) ( ) 2

2
1sincos,, φφεφεφ kLPP +−=Π  (2.17) 

where ε  denotes the imperfection. The expression in the brackets defines the position 

of the load if the hinge is taken as a datum line. The second term gives the strain energy 

of the spring. At the critical state the deformation is 0=crφ  and the critical load is 

given in Equation (2.4). The Taylor series expansion in a local system gives: 

 u
L
kuLkuV ελ −−= 24

2
1

24
1  (2.18) 

where 

 cru φφ −= , crPP −=λ  and crV Π−Π= . (2.19) 

Note that only terms of order up to four and the least order mixed terms are included 

since they are the characteristic ones. Equation (2.18) is clearly equivalent to the cusp. 

Now let us examine the second structure shown in Figure 2.3(a). In a similar way to 

the first case we include imperfections into the potential energy function: 

 ( ) ( ) ( )2sin
2
1sincos,, φφεφεφ LkLPP +−=Π  (2.20) 

whose Taylor series expansion gives: 

 ukLuLukLV ελ −−−= 242

2
1

8
1 , (2.21) 

which is the canonical form of the dual cusp catastrophe. 

And finally the third example shown in Figure 2.4(a) is to be analysed. Again the 

potential energy function is: 

 ( ) ( ) ( )22 1sin1sincos, −++−=Π φφεφφ kLLPP . (2.22) 

The Taylor series expansion gives 

 ukLuLukLV ελ
2
1

2
1

8
1 232 −−−= . (2.23) 
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A linear transformation kLuu 34λ−=  eliminates the second order term in the Taylor 

series. The new form in terms of the new variable u  is now equivalent to the third form 

in Thom’s theorem and thus the structure has the fold catastrophe. 

2.4 Bifurcations of compatibility paths of mechanisms 

2.4.1 Definitions 

Maxwell’s rule in structural engineering, as in (1.1) is a fundamental tool to assess the 

kinematic indeterminacy of a bar-assembly, but it is only a necessary condition for the 

rigidity of an assembly. There are special assemblies that are kinematically 

indeterminate due to their special topology though they are expected to be rigid by 

Maxwell’s rule. Moreover, researchers discovered that the kinematic indeterminacy of a 

bar-and-joint assembly is affected by not only the topology but the metric properties of 

the assembly as well. A discussion on this topic can be found in more recent literature 

(Szabó and Roller, 1978; Tarnai, 1984, 1990). If a special geometry with unchanged 

topology makes the bar-assembly kinematically indeterminate, then that geometry is 

called the critical form. A simple example is a three-hinged two-bar structure supported 

at both ends as shown in Figure 2.8(a). In the original configuration the assembly is a 

load-bearing structure. In the special case of reducing the height of the structure to zero, 

see Figure 2.8(b), the bar-assembly loses its structural stiffness and becomes an 

infinitesimal mechanism. 

Figure 2.8: Three-hinged two-bar structure. (a) Non-collinear joints result in a statically determinate,
load-bearing structure. (b) Collinear joints lead to an infinitesimal mechanism.

(a) (b)
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Infinitesimal mechanisms can undergo displacements with only infinitesimal 

elongations of bars. The order of a mechanism is determined by the highest possible 

order of elongations due to a suitable displacement system. Based on this, we can say 

that the two-bar linkage shown in Figure 2.8(b) is a first-order infinitesimal mechanism 

as the vertical displacement of the middle node does not cause first-order elongations 

but only second-order ones. The mobility of infinitesimal mechanisms was studied in 

the past by many researchers including Pellegrino and Calladine (1978), Kuznetsov 

(1989) as well as Tarnai and Szabó (2002). 

A kinematically indeterminate bar-assembly can be a finite mechanism, which carries 

out finite motions while its elements remain inextensional. Maxwell’s rule may help to 

determine the number of kinematic degrees-of-freedom at a general position of the 

mechanism. However, a finite mechanism may also have a critical form where the 

number of kinematic degrees-of-freedom increases. At the point of bifurcation the 

mechanism can change its configuration and hence continue its motion along different 

kinematic paths. Litvin (1980) has given a mechanism that produces such behaviour. In 

addition to the regular parallelogram shape, this four-bar linkage can also have a second 

configuration, which can be called anti-parallelogram shape, see Figure 2.9. Another 

example, a kite-shaped four-bar linkage has been shown by Tarnai (1999), which also 

has two configurations, see Figure 2.10. 

Mechanisms require a certain number of kinematic state variables to determine the 

position of the elements. Placing the mechanism into a suitable coordinate system, an 

obvious choice of variables are the coordinates of the nodes. Since the nodes are 

connected by bars according to the topology of the mechanism, constraint equations 

should be formulated. Such an equation is called the compatibility condition. It can be 

in the form of the distance between the two nodes, which is equal to a given value: one 

compatibility condition is required for each bar. 

Alternatively, an angle between a bar and a reference direction (in practice a 

coordinate axis) can be used. Assuming that particular bar to be rigid, the length of the 

bar and the angle replace the two coordinates of the end node. Consequently, the 
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compatibility condition for that bar is automatically fulfilled, e.g. two angles can 

describe the position of nodes A and B in Figures 2.9 and 2.10. A single compatibility 

condition is formulated for bar AB. Hunt (1978) has studied the input-output curves of a 

general four-bar linkage. 

Values of the kinematic state variables which satisfy the compatibility conditions 

form compatibility paths (in the general case compatibility manifolds) in the variable 

space. A general configuration of a mechanism corresponds to a point on the 

compatibility path. A point where branches of compatibility paths intersect one another 

is called a bifurcation point. Here the mechanism is in critical form since in this 

position it can change its form and move along a different path. 

2.4.2 Asymmetric kinematic bifurcation 

The mechanism Tarnai has shown produces a bifurcation similar to the asymmetric 

equilibrium bifurcation. Tarnai (1999) pointed out that the kinematic bifurcation is 

Figure 2.9: Two configurations of the parallelogram-shaped mechanism. (a) Parallelogram shape.
(b) Anti-parallelogram shape.
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Figure 2.10: (a) Kite-shaped four-bar mechanism in which the neighbouring bars have the same
length in pairs. (b) A configuration with adjoining bars.
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analogous to the well-known equilibrium bifurcations in stability theory. He suggested 

further study of kinematic bifurcations with respect to the similarities and differences 

between the two subjects. A numerical method for the simulation of kinematic 

bifurcations of deployable structures was proposed by Kumar and Pellegrino (2000). 

The compatibility of the kite-shaped mechanism can be written for angles α  and β  

as indicated in Figure 2.11(a). Points that correspond to compatible configurations of 

the mechanism, denoted by thick continuous lines, are plotted in Figure 2.11(d). The 

0=α  path, i.e. the horizontal line corresponds to the configuration shown in Figure 

2.10(b). It has singular positions at 0=β  and π=β  where all bars are aligned with the 

line of the supports. At these points the mechanism can change its shape and move 

along a different path. The path crossing the origin of the coordinate system, also 

denoted by a thick line, corresponds to the configuration shown in Figure 2.10(a). 

Tarnai also studied the behaviour of the imperfect mechanism. If a small error in 

length is introduced to the left bar, different compatible positions are obtained, see 

Figures 2.11(b) and (c). Graphs of imperfections with positive and negative sign are 

plotted in Figure 2.11(a) as solid and dashed thin lines, respectively. 

Figure 2.11: Kite-shaped four-bar linkage. (a)-(c) Perfect and imperfect geometries. Imperfection of
the bar on the left side is considered. (d) Compatibility paths.
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Prior to Tarnai, Litvin (1980) showed a parallelogram-shaped four-bar linkage, 

which has an asymmetric bifurcation, see Figure 2.12(a). Two parameters, α  and β  are 

used to describe the system and the compatibility paths are shown by thick continuous 

lines in Figure 2.12(b). One path, defined by a straight line from the top right to bottom 

left, corresponds to the parallelogram shape while the other to the anti-parallelogram 

shape, see Figure 2.9. 

Consider now a small ε  manufacturing error in the length of the side bar on the left. 

The singularity of the mechanism is disturbed and the compatibility paths change. Paths 

corresponding to positive and negative imperfections are denoted by thin continuous 

and dashed lines in Figure 2.12(b), respectively. The paths have limit points now: if the 

imperfection is positive or negative, extrema are obtained for α  or β , respectively. 

Tarnai (1999) has established the imperfection-sensitivity relationship for the particular 

case of 2=a  and 1=b . However, it is possible to derive the formulae in general: 

 ( ) 0,2 21 >−±≈ εεα
ab

ba
extr  (2.24) 

and 

 ( )( ) 0,2 21 <−+±≈ εεβ
ab

ba
extr . (2.25) 

Figure 2.12: Parallelogram-like four-bar mechanism. (a) Basic structure. (b) Compatibility path.
Thick lines denote the perfect system, thin continuous and dashed lines refer to positive and negative

imperfections, respectively. (c)-(d) Imperfection-sensitivity.
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The imperfection-sensitivity diagrams are shown in Figures 2.12(c) and (d). 

2.4.3 Matrix analysis: the Jacobian and the Hessian 

Tarnai (1990) has also proposed a method for the analysis of mechanisms. Given a 

suitable coordinate system, the Cartesian coordinates of the nodes of the mechanism are 

chosen to describe the configuration. The vector Q contains n kinematic state variables: 

 [ ] [ ] TT
1 KKK iin yxQQ ==Q . (2.26) 

where ix  and iy  represent coordinates. Compatible configurations are represented by 

the compatibility conditions in terms of the parameters: 

 ( ) ( )[ ] mklyyxxF kijijk ,,1,0
2
1 222

K==−−+−= . (2.27) 

The Jacobian matrix of the compatibility condition system can be written as 

 ( ) 







∂
∂

=
i

k
n Q

F
QQ K1J . (2.28) 

Denote Q0 as the kinematic parameters at a particular compatible configuration of 

the mechanism and calculate the rank of the Jacobian matrix at that configuration. Two 

possibilities may exist. 
If ( ) m=

0
Jρ , i.e., the rank of J at Q0 does not decrease, the equations of (2.27) are 

linearly independent, and therefore the system is a finite mechanism. 
If ( ) m<

0
Jρ , i.e., the rank of J at Q0 decreases, then the system is in a critical form 

and the equations in (2.27) are not linearly independent. Because of the linear 

dependency there exist ( )mkck ,,1 K=  constants so that function 

 ∑
=

=Φ
m

k
kk Fc

1
 (2.29) 

does not contain linear terms in its Taylor-series. At that point function � has an 

extremum if the first-order derivatives are zero: 
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 0
1 0

=
∂
∂

=
∂

Φ∂ ∑
=

m

k i

k
k

i Q
F

c
Q

 ni ,,1 K= . (2.30) 

The equation system (2.30) can be written as 

 0cJ =
0

T , (2.31) 

which holds because of the definition of Φ. Now we define the Hessian matrix of 

function Φ: 

 ∑
=

=
m

k
kkc

1
HH  (2.32) 

where 

 












∂∂
∂

=
ji

k
k QQ

F2

H , mk ,,1 K= . (2.33) 

If the Hessian matrix is definite, the system is an infinitesimal mechanism. If it has 

positive and negative eigenvalues, i.e. indefinite, the system is a finite mechanism, and 

if it is semidefinite, further examinations are required. 

The compatibility path of the mechanism has a bifurcation at point Q0 if the 

mechanism is in a critical form there and preserves its mobility, i.e. the Hessian matrix 

is indefinite. 

The method proposed in this section is discussed in detail in Chapter 4 and tested out 

with the aid of examples. 

2.5 Other bifurcation phenomena in kinematics 

Bifurcation phenomena occur in other fields of kinematics. Much work has been done 

on trajectory singularities of planar and spatial motions (Gibson and Hobbs, 1993, 1995, 

1996; Donelan et al, 1999). Mechanism examples are also shown (Gibson et al, 1994, 

1996, 1998). Xiang’s thesis (1995) deals with planar mechanisms with one and two 
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degrees-of-freedom to demonstrate the singularities of trajectories of mechanisms. 

While compatibility paths define the relationship between the kinematic variables of a 

linkage in a multi-dimensional coordinate system, trajectories are two- or three-

dimensional curves that chosen points of the linkage follow when the mechanism is 

activated. 
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It has been shown in the previous chapters that bifurcation phenomena have been found 

in kinematics of mechanisms that shows similar appearance to the well-known 

bifurcations of equilibrium paths in stability theory. In this chapter we extend the 

analogy along this line and show bifurcation modes other than the asymmetric one 

occurring for mechanisms, too. Kinematic counterparts of the equilibrium terms (e.g. 

variables, path, etc.) and the analogous behaviour are also discussed. A classification of 

the compatibility paths is proposed. 

3.1 Bifurcation of compatibility paths 

3.1.1 Extended analogy 

The review given in Chapter 2 has shown great similarities between equilibrium paths 

of structures and compatibility paths of mechanisms. These similarities are listed in 

Table 3.1. The missing links are indicated by question marks. 

Structures are expected to carry design loads, and consequently, their analysis 

requires both displacements and load parameters. Imperfections can be introduced, such 

as length errors of bars, initial inclination angles, and possibly imperfect position of 

load, etc. On the other hand, mechanisms are designed to transmit some specific motion 

and loads often are not included in the mathematical formulation. Thus, only kinematic 

state variables are used, such as Cartesian coordinates or angles. Accordingly, 

imperfections are taken into consideration only as geometric inaccuracies of elements, 

e.g. length errors of bars, etc. 

As reviewed in Chapter 2, in both cases constraint conditions define the relationship 

between the variables, referring to feasible states of the system. For structures the 

constraints express static equilibrium, which is represented by equilibrium paths. 

Similarly, compatibility conditions are formulated for mechanisms, which define 

geometrically feasible configurations. They are represented by compatibility paths. 
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Table 3.1: Analogy between structures and mechanisms

Stability Kinematics

Object Structure Mechanism

Variables Displacements

Load

Coordinates, angles

Imperfections Geometric

Position of load

Geometric

Constraint condition Equilibrium Compatibility

Graph of constraint
condition

Equilibrium path Compatibility path

Bifurcation Asymmetric

Stable symmetric

Unstable symmetric

Degenerate symmetric

Asymmetric

?

?

?

Imperfect behaviour Disturbed equilibrium
paths may avoid
bifurcation point
(in the cases shown in
Chapter 2)

Disturbed compatibility
paths may avoid
bifurcation point
(in the cases shown in
Chapter 2)

Classification of
equilibrium / compatibility

Stable, unstable, neutral,
critical

?

 

Three well-known common modes of bifurcation have been introduced in 

Section 2.2: the asymmetric, the stable symmetric (increasing load) and the unstable 

symmetric bifurcation (decreasing load). A degenerate symmetric bifurcation has been 

found later. On the other hand, the two examples of mechanisms, which have been 

analysed only have asymmetric bifurcations. 

The imperfect behaviour of the asymmetric bifurcation has also been shown for both 

equilibrium paths and compatibility paths. All the structures and mechanisms discussed 



 37 

above show that in the case of imperfections the new paths avoid the original 

bifurcation point. However, this may not always be the case. 

In the following part of this chapter examples of mechanisms are presented which 

will extend the analogy and complete the missing parts in Table 3.1. 

3.1.2 Symmetric bifurcation: a six-bar mechanism 

Consider a six-bar mechanism shown in Figure 3.1(a). Bars OAA and OBB have unit 

length while all the others are 2 . The two supported nodes are located at ( )0,1−AO  

and ( )0,1BO . Node D is also supported by a roller allowing it to move along axis y only. 

As the mechanism has 6=j  nodes, 6=b  bars and 5=k  supported degrees-of-

freedom, Maxwell’s rule indicates that it has one kinematic degree-of-freedom. It can be 

represented by the motion of node D in the basic configuration. 

A sufficient number of kinematic state variables and compatibility conditions are 

required to describe the mechanism in a most general way. Assuming that length of bars 

OAA, OBB and AC are given, four independent variables are necessary to define the 

positions of A, B, C and D. We choose 1φ , 2φ , 3φ  and 4φ  in Figure 3.1(b). 

Compatibility conditions can be formulated for the remaining bars, ➀ , ➁ , and ➂ : 

Figure 3.1: A six-bar mechanism. (a) Basic structure. (b) Kinematic variables. For bars , , and 
compatibility conditions are established.
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 ( ) 02, 411 =−= φφADdF ,  

 ( ) 02, 422 =−= φφBDdF , (3.1) 

 ( ) 02,, 3213 =−= φφφBCdF   

where dAD, dBD and dBC denote the distance between the nodes indicated in terms of the 

angles. (A detailed study of compatibility is given in Chapter 4.) 

Sets of values of the variables that satisfy the compatibility conditions (3.1) form the 

compatibility paths in the four-dimensional space of ( )4321 ,,, φφφφ . Planar projections 

of the paths are plotted in Figure 3.2. Characteristic points of the paths are marked by 

numbers and the corresponding configurations are shown in Figure 3.3. Bars AC and BC 

may have two different positions: they are drawn by dashed and dotted lines, also 

coloured red and green, respectively. The two configurations are referred to by single 

and double quotes following the number, respectively: 2′, 2″, 3′, 3″, 4′, 4″, 6′, 6″, 7′, 7″, 

8′, 8″, 10′, 10″, 11′ and 11″. The chain ACB has only one position at points 1, 5, 9 and 

12. 

Figure 3.2 shows that the compatibility paths consist of four closed loops and two 

straight lines. Curve A connects points 1, 2′, 3′, 12, 11′, 7′ and 1, curve B connects 1, 2″, 

3″, 12, 11″, 7″ and 1, curve C connects 5, 4″, 3″, 10″, 9, 8″, 7″, 6″ and 5, and finally 

curve D connects 5, 4′, 3′, 10′, 9, 8′, 7′, 6′ and 5. Paths A and B correspond to symmetric 

configurations while the other two to asymmetric ones. The straight line E1 connects 

points 2′ and 2″, and E2 connects 11′ and 11″. 

The two lines are projected to a single point in the plane ( )21, φφ . The projections of 

curves A and B coalesce as well as curves C and D. The two lines coalesce in the plane 

( )32 , φφ . One loop is the projection of curves A, B and D, while the other loop refers to 

curve C only. The straight lines are separated in plane ( )43, φφ  while the curves coalesce 

in pairs: A with D, and B with C. Finally, the lines are projected to one point each and 

the curves all coalesce in plane ( )41, φφ . 
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Figure 3.2: Planar projections of the compatibility paths of the six-bar mechanism. Numbers mark
characteristic configurations, followed by ′ and ″ if node C have two different positions. Closed

compatibility paths are marked as A, B, C and D. Straight lines are marked as E1 and E2. Crossing
paths without marking imply no intersecting of the paths.

 E1 E2

 E1

 E1 E1

 E2

 E2  E2

Limit point

Bifurcation point

2 bifurcation points

Bifurcation point + 1 path

Bifurcation point + 2 paths

2 bifurcation points + 1 path + 1 straight line

2 bifurcation points + 2 paths

4 bifurcation points + 2 straight lines

Legend

1.571

1.144 0

-1.571

-1.144

-0.7850.785

1

12

7' 7''

-1.998 -1.144 0 1.9981.144

6' 6''

4' 4'' 11' 11''
2' 2''

8' 8''

10' 10''

5

9

1 6'

7'

11' 2''
2' 11''

3'

12 10'

3''
8'

10''

9

6''
5

7''

4'
4''

8''

3' 3''

2''

11'

2' 2''
10' 10''

8'

9

1 8' 8''

12 4' 4''

5

6' 6''

11' 11''

7' 7''

2'
4'

10''
12 10' 4''

95

1 6' 8''6''

11''
7'' 7'

3' 3''

0

-1.144

-1.998

1.998

1.144

-2.197

-1.414

-0.910

0

0.910

1.414

2.197

 φ1

 φ2

 φ3

 φ4

3' 3''

ABCD

AB
CD

C

ABD

AD BC

 

In the projections of the compatibility paths the curves may coalesce, intersect each 

other with bifurcation or cross without bifurcation. It is easy to tell that the paths 

bifurcate in the configurations 1, 2′, 2″, 3′, 3″, 5, 7′, 7″, 9, 11′, 11″ and 12. The points of 

the four-dimensional paths produce special coincidences in the two-dimensional 

projections, resulting in a large variety of different points. Therefore various notations 

are introduced as shown in Figure 3.2. It is important to mention a multiple coincidence 
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where four bifurcation points and the two straight lines are projected to the single point 

( )0,0  in plane ( )21, φφ . Crossing paths without marking correspond to non-intersecting 

compatibility paths. 

Let us study three most representative characteristic points in detail. First consider 

point 1. The corresponding configuration of the mechanism is shown in the first 

diagram in Figure 3.3 and is reproduced in Figure 3.4(a). Here all the longer bars are 
horizontal. The coordinates of this configuration are ( )21arccos0,20,1 −== φφ , 

00,3 =φ  and 2220,4 −=φ . The compatibility paths are best viewed in the projection 

( )43, φφ . Here curves A and B intersect creating a bifurcation point. In this projection 

point 1 coalesces with points 6′ and 8″, which belong to curves D and C, respectively. 

Omitting these independent compatibility paths, the relevant section is plotted in thick 

solid lines in the local coordinate system ( )43, φφ ′  centred at the bifurcation point as 

 Figure 3.3: Characteristic configurations of the six-bar mechanism. Numbers correspond to those of
positions in Figure 3.2. Black lines denote chain OAADBOB. Red and green lines denote two possible

positions of chain ACB.

1 2’  2’’ 3’  3’’ 4’  4’’

5 6’  6’’ 7’  7’’ 8’  8’’

9 10’  10’’ 11’     11’’ 12
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shown in Figure 3.4(b) where 0,444 φφφ −=′ . The two paths are locally symmetric to axis 

3φ  and they have an inclined tangent to axis 4φ . They correspond to node C moving up 

or down when node D is actuated by changing 4φ . 

Consider an imperfection of the mechanism: bar AC is made longer or shorter by a 

small amount ε  with respect to the original size. The bifurcation is disturbed and the 

Figure 3.4: Bifurcation point 1 of the six-bar mechanism. (a) Configuration. (b) Compatibility paths. 
Thick lines correspond to perfect geometry. Thin continuous and dashed lines denote paths with 

positive and negative ε, respectively, which is imperfection of bar AC. 
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Figure 3.5: Imperfection-sensitivity of the six-bar mechanism near bifurcation point 1. (a) Extreme
configuration at positive imperfection of bar AC. (b) Extreme configuration at negative imperfection.

(c)-(d) Imperfection-sensitivity diagrams for positive and negative imperfections, respectively.
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compatibility paths change. The new paths are plotted in thin continuous and dashed 

lines in Figure 3.4(b). 

Note that all curves have limit points near the bifurcation point of the path for the 

perfect mechanism. In the case of a positive imperfection, parameter 3φ  has extrema, a 

maximum on one of the paths and a minimum on the other. The corresponding 

configuration of the mechanism can be determined by geometric considerations. As line 

AB is parallel to axis x, 3φ  in triangle ABC is minimized (or maximized) when the 

distance AB is maximized. This occurs when A, D and B are collinear. The 

configuration corresponding to the minimum position is shown in Figure 3.5(a). Denote 

extr,3φ  as the extremum of 3φ . Now the cosine of extr,3φ  can be calculated in triangle 

ABC, from which the exact and approximate formula for the angle is obtained: 

 ( )
2141

2

,3 2
224

228arccos ε
ε
εεφ −±≈









+
++=extr . (3.2) 

This relationship is shown in Figure 3.5(c). 

If a negative imperfection is considered, parameter 4φ  can have extremum points. In 

Figure 3.5(b) a position is shown at which 4φ  is maximized in the lower curve. In a 

similar way to the previous case, extr,4φ , which is the extremum of 4φ , can be calculated 

in triangle ABC: 

 ( ) 2141
0,4

2

0,4,4 2
4

2 εφεεφφ −±≈−−±=extr . (3.3) 

This relationship is shown in Figure 3.5(d). 

Consider now bifurcation point 2′, which is one of the intersection points between 

paths A and E1. The coordinates of the point are 021 == φφ , 23 π=φ  and 24 −=φ  

and the configuration is shown in Figure 3.6(a). The two bars with unit length are 

aligned along axis x so that nodes A and B coalesce at the origin of the coordinate 

system. Bars AD and BD are adjoined as well as bars AC and BC and node C is on 

axis y. 
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Moving from that position, the mechanism may have two different configurations as 

shown in Figure 3.6(b) and (c). The first configuration involves the movement of node 

C only while the rest of the mechanism is motionless. Parameter 2φ  is constant zero and 

3φ  changes as bars AC and BC are simultaneously rotating around the common centre. 

The corresponding path is a straight line denoted by E1 in Figure 3.2. 

The other configuration involves the motion of the entire mechanism. As 2φ  changes 

linkage ABCD opens up to make a diamond shape, see Figure 3.6(c). This motion 

corresponds to the curved path denoted by A in Figure 3.2. As nodes A and B are 

moving apart during the motion, 3φ  is decreasing regardless of the sign of 2φ . 

Furthermore, the symmetry of the mechanism also ensures the symmetry of the 

compatibility path. 

Paths A and 1E  have another intersection at point 2″. At this point the coordinates are 

the same with the exception of 23 π−=φ . Hence the configuration is very similar to 2′ 

but node C is pointing down coalescing with D. It is easy to show that a similar 

behaviour occurs at this bifurcation point. The compatibility path is now a mirror image 

with the opposite sign of 3φ . 

Figure 3.6: Bifurcation point 2′ of the six-bar mechanism. (a) Configuration at the bifurcation point.
(b, c) Configurations corresponding to paths A and E1.
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The behaviour of the mechanism at points 2′ and 2″ is best viewed in the projection 

( )32 , φφ . The compatibility paths are shown in Figure 3.7(a) by thick solid curves. At 

point 2′, the bifurcation is a symmetric decreasing one, similar to an unstable symmetric 

equilibrium bifurcation in structural stability theory, while the bifurcation at point 2″ is 

a symmetric increasing one close to the same named stable symmetric equilibrium 

bifurcation in the structural stability theory. 

Imperfection is again taken into consideration as the inaccuracy ε of the length of bar 

AC. Compatibility paths of positive and negative imperfections are denoted by thin 

continuous and dashed thin lines, respectively, in Figure 3.7(a). Bifurcation again does 

not occur and the graph is separated into several branches. Paths that correspond to 

positive imperfections have limit points and the others do not. Similarly, some of the 

imperfect equilibrium paths in Figures 2.2(b) and 2.3(b) have limit points while others 

Figure 3.7: Bifurcation points 2′ and 2″ of the six-bar mechanism. (a) Compatibility paths. Thick lines
denote perfect structure, thin continuous and dashed lines denote positive and negative imperfection of

bar AC, respectively. (b) Extremum of φ3 at ε > 0. (c) Extremum of φ2 at ε > 0. (d)-(e) Imperfection-
sensitivity diagrams for cases b and c, respectively.
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do not. But contrary to the equilibrium case, compatibility paths corresponding to the 

same imperfection are now symmetric in position as they are in adjacent sections of the 

graph on the two sides of axis 3φ . (In the equilibrium case they are in opposite 

quadrants of the graph.) 

The negative paths are on the upper and lower part and have no limit points. The 

positive paths are between the perfect curved paths and have two limit points each. This 

means that during the motion 3φ  cannot exceed a particular value which depends on the 

magnitude of the imperfection. The corresponding configuration of one of the limit 

points ( 02 >φ , 03 >φ ) is shown in Figure 3.7(b). Here 3φ  reaches a maximum which 

can be determined by geometric considerations. As AB is parallel to axis x, 3φ  is equal 

to the angle at node A in the triangle ABC. Angle 3φ  is maximized if its sine is 

maximized. As the latter quantity is proportional to the distance between node C and 

line AB, the extremum is obtained if bar BC is perpendicular to line AB. Now 3φ  is 

calculated in triangle ABC: 

 2141
,3 2

22
2arcsin ε

ε
φ −π≈









+
=extr . (3.4) 

The imperfection-sensitivity diagram is shown in Figure 3.7(c). 

The compatibility path in Figure 3.7(a) also shows that 2φ  reaches its extrema. The 

corresponding configuration is shown in Figure 3.7(d) which is again determined by 

simple geometric considerations. Since bar AC is by an amount ε  longer then BC, the 

distance between nodes A and B cannot be smaller than ε . The extremum of 2φ  is 

reached when this distance equals ε . In this position nodes A, B and C are aligned 

parallel to axis x. As the distance of A and B is given in terms of 2φ , the following 

relationship is obtained: 

 21
,2 2

1arccos εεφ ±≈





 −=extr . (3.5) 

The imperfection-sensitivity diagram is shown in Figure 3.7(e). 
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The implication of imperfections is that the mobility of the mechanism is 

significantly reduced. If the mechanism is actuated by bar OAA, i.e. the actuator drives 

angle 2φ , it will halt as 2φ  reaches its minimum. Also at the limit point in Figure 3.7(a) 

maximum of 3φ  is less than the value at the original bifurcation point. Now bar AC 

cannot rotate freely and it cannot even rise to the vertical position. 

3.1.3 Degenerate bifurcation: a square-shaped linkage 

Consider now a special four-bar linkage shown in Figure 3.8(a). It is a special case of 

either the parallelogram-shaped mechanism or the kite-shaped one as all four bars are 

now of the same length. Two kinematic state variables are used again, angles α and β 

determine the position of nodes A and B, respectively. The compatibility condition can 

be written for bar AB, and the compatibility paths are plotted in Figure 3.8(b) by thick 

continuous lines. 

The graph shows similarity to that of the kite-shaped mechanism previously shown 

in Figure 2.9(d). The straight branches at axis β are identical in both cases and the 

curved ones are now straight and in a similar position. Bifurcation occurs at three points 

Figure 3.8: Square-shaped four-bar mechanism. (a) Basic structure, imperfection of bar OBB is
considered. (b) Compatibility paths. Thick lines denote perfect structure, while thin continuous and

dashed lines refer to positive and negative imperfections, respectively.
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in the graph: ( )0,0 == βα , ( )π=π= βα ,  and ( )π== βα ,0 . The first and the 

second are asymmetric bifurcations while the third is different. Since the two branches 

are straight lines that intersect at a right angle, this bifurcation is symmetric but at the 

same time it is neither increasing nor decreasing. It can be regarded as an infinitely 

degenerate case of the symmetric bifurcations shown above and be paralleled to the 

equilibrium bifurcation of the special structure shown in Section 2.2.4, see Figure 2.5. 

Special configurations of the mechanism corresponding to bifurcation points are 

shown in Figure 3.9. In all cases the bars are aligned with axis x. At the first bifurcation 

point the mechanism can either move to the basic configuration in Figure 3.8(a) or bars 

AB and OBB rotate simultaneously in a similar way to the kite-shaped mechanism. The 

second bifurcation point is similar with the difference of bars AB and OAA rotating 

simultaneously. The third bifurcation point combines both of the previous ones as the 

mechanism is ‘doubly-folded’ and all bars occupy the same position. Note that in 

Figure 3.9(c) it is shown distorted for better visualization and bar OAOB is also omitted. 

At this position the mechanism can follow two compatibility paths. One of them 

corresponds to the simultaneous rotation of bars OAA and AB around OA and now α is 

Figure 3.9: Bifurcation points of the square-shaped mechanism. (a) α = 0, β = 0 (b) α = π, β = π
(c) α = 0, β = π

(b)(a)

α = 0, β = 0 α = 0, β = π

 B A, OB

 A, OB

 OA  B, OA A  B, OA  OB

α = π, β = π

(c)

Figure 3.10: Configurations corresponding to the compatibility paths of the square-shaped four-bar
mechanism at bifurcation point (α = 0, β = π). (a) β = π and α is varying. (b) α = 0 and β is varying.
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varying while β remains π. The situation is similar for the other compatibility path 

where bars AB and OBB are rotating. Here α is constant zero and β is varying. The 

configurations are shown in Figure 3.10. The graphs are again distorted for better 

visualization and bar OAOB is omitted. 

Imperfect behaviour is taken into consideration as the geometric error ε of bar OBB. 

Compatibility paths of positive and negative values of ε are denoted by thin continuous 

and dashed lines, respectively, in Figure 3.9(b). Again the imperfect mechanism does 

not have bifurcations. The compatibility paths near the first and the second bifurcation 

points are similar to those of the kite-shaped four-bar mechanism shown in 

Figure 2.9(d). At each bifurcation point two paths have limit points and the other two do 

not. Imperfection-sensitivity diagrams can be drawn similar to those presented for the 

parallelogram-shaped four-bar mechanism. 

At the third point the behaviour is different because both perfect paths are straight 

lines. Comparing the imperfect paths in Figure 3.8(b) with those in Figure 2.5(b) one 

can see that the compatibility and equilibrium paths have similar shape and position in 

the neighbourhood of the bifurcation point. 

3.2 Classification of compatibility paths 

The imperfect configuration of the six-bar mechanism demonstrates that irregular 

behaviour can occur not only at points where branches of compatibility paths meet but 

along the entire compatibility paths, too. Such irregular behaviour demands a 

classification which covers all points of the paths. 

In stability theory points of equilibrium paths are typically stable or unstable 

depending on whether the potential energy at the equilibrium position has a local 

minimum or maximum. Entire sections of equilibrium paths are stable or unstable 

between points where the stability changes. These are the critical points, including limit 

points and bifurcation points. A curious exception is given by the state of neutral 
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equilibrium, which occurs for example on the secondary path of the degenerate structure 

shown in Figure 2.5. 

No equivalent terms have been defined for the stability of a configuration of 

mechanisms for we have not considered the local minimum or maximum of a potential 

function but applied the compatibility conditions in the analysis directly. However, 

distinction should be made between regular and irregular behaviour of compatibility 

positions. 

The irregularity can be in a way captured by applying perturbations to a perfect 

system. Consider again the six-bar mechanism and its compatibility paths shown in 

Figure 3.7(a). Thin lines denote the compatibility paths in the case where the length of 

bar AC is changed by ε . Regardless of the sign of the imperfection each of the curved 

compatibility paths has one imperfect path in its vicinity. If the imperfection is positive 

or negative, the imperfect paths are on the ‘inner’ or ‘outer’ sides of the bifurcation 

points, respectively, which, however, represent completely different behaviour. If the 

imperfection is positive, there are two imperfect lines along the section between the 

bifurcation points and none outside. With a negative imperfection the situation is the 

other way round. We can conclude that entire sections of the compatibility paths can 

either split into two or vanish. Note that in this case the bifurcation points have 

vanished, just as happens with the four-bar linkages. 

It is also possible to introduce imperfections so that the bifurcation points do not 

vanish but themselves split. Bifurcation points of the six-bar mechanism occur when the 

two sidebars are aligned and nodes A and B coalesce. This special configuration is 

possible due to the equality of the distance between the two fixed supports and the total 

length of the two bars. 

Consider a perturbation of the configuration by introducing an imperfection to the 

fixed supports: they are made either closer to or farther from each other by a small 

amount δ  while the bar lengths remain unchanged, see Figure 3.11(a). Positive δ  

refers to the distance becoming larger. In this case no bifurcation occurs as nodes A and 

B cannot coalesce. Moreover, the entire straight path vanishes because the simultaneous 
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(or near simultaneous) rotation of bars AC and BC is not possible, as shown in 

Figure 3.11(b). Note that the curved path is perturbed but exists. Figure 3.11(c) shows 

the configuration of the mechanism where the imperfect curved path reaches its 

extremum. 

If the imperfection is negative, i.e. the fixed points are shifted towards each other, 

nodes A and B can coalesce before they reach the origin of the coordinate system. It 

happens in two positions on either sides of axis x. The simultaneous rotation is possible 

in both cases. Consequently, the entire straight path splits into two as shown in 

Figure 3.11(d). Note again that the perturbed curved paths exist and form new 

bifurcation points with the straight paths, i.e. the bifurcation points have also split, see 

Figure 3.11: Split-vanish compatibility path of the six-bar mechanism. (a) Basic structure with
imperfection δ. (b) Perfect compatibility paths (heavy lines) and imperfect compatibility paths for

δ > 0 (thin dashed line). (c) Configuration for the extremum of the imperfect curved path. (d) Perfect
compatibility paths (heavy lines) and imperfect compatibility paths for δ < 0 (thin continuous lines).

(e)-(f) Bifurcation configurations of the imperfect mechanism.
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Figures 3.11(e) and (f). Due to the symmetry of the compatibility paths, Figures 3.11(b) 

and (d) show the vicinity of one bifurcation point only. 

Considering the various kinds of behaviour, a classification of compatibility positions 

is clearly needed. We group points on compatibility paths into five types as follows: 

(a) Regular point: a point on a compatibility path which cannot be made to split or 

vanish. 

(b) Regular bifurcation point: points where two or more regular compatibility paths 

meet. 

(c) Limit point: distinct point of a compatibility path where one of the state variables is 

maximized or minimized in terms of the others. 

(d) Split-vanish point: a point that can either split or vanish by applying a suitable 

perturbation to the system. No bifurcation exists at the point. 

(e) Split-vanish bifurcation point: a bifurcation point which can either split into two 

bifurcation points or vanish with a suitable perturbation applied to the system. 

Most of the compatible positions of mechanisms are regular such as general points of 

the kite-shaped or the parallelogram-shaped mechanisms, etc. Note that straight 

compatibility paths can also be regular. 

A compatibility path consisting of only regular points, limit points and/or regular 

bifurcation points is defined as a regular compatibility path. A compatibility path which 

has split-vanish points and/or split-vanish bifurcation points is defined as an irregular 

compatibility path. 

3.3 Compatibility condition revisited 

Compatibility conditions have been set up previously for the six-bar linkage and the 

parallelogram-shaped linkage in order to obtain compatibility paths. Here we revisit 

these equations and examine their general form and alternatives. 
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Compatibility conditions are defined as equations that determine values of the 

kinematic state variables corresponding to compatible configurations of a mechanism. 

The equation yields zero if and only if the condition is satisfied. Its analogue in 

structural mechanics is the equilibrium equation, which expresses the static equilibrium 

of a structure. 

In both cases, in principle, the constraint equations can be formulated arbitrarily in 

terms of variables iq  if and only if the related system is in equilibrium or compatible, 

respectively: 

 ( ) 0=KK iqF . (3.6) 

In structural stability, real equilibrium equations are used. Furthermore, they are derived 

from the potential energy of the structure, as shown in Section 2.1. 

On the other hand, the situation is not obvious for mechanisms and various 

formulations of the compatibility conditions are possible. Tarnai (1990) used Cartesian 

coordinates of the nodes and created one compatibility condition for each bar of the 

linkage: 

 ( ) ( )[ ] 0
2
1 222 =−−+−= kijijk lyyxxF  (3.7) 

where lk is the length of bar k which connects nodes i and j. This formulation states that 

the square of the distance between the nodes is equal to the square of the length of the 

bar. A formally more complicated expression is obtained if the distances and the lengths 

are used: 

 ( ) ( ) 022 =−−+−= kijijk lyyxxF . (3.8) 

Alternatively, the number of variables can be reduced by introducing angles instead 

of translational coordinates. All the mechanisms in Section 2.4 were described by two 

angles, which implicitly satisfied some of the compatibility conditions. In the remaining 



 53 

single equation the coordinates of the nodes are all in terms of the angles. Two 

formulations are possible again: 

 ( ) ( ) ( )[ ] ( ) ( )[ ]{ } 0,,,,
2
1, 222 =−−+−= kijij lyyxxF ηξηξηξηξηξ , (3.9) 

 ( ) ( ) ( )[ ] ( ) ( )[ ] 0,,,,, 22 =−−+−= kijij lyyxxF ηξηξηξηξηξ  (3.10) 

where ξ and η denote the kinematic state variables. 

The equations with square root forms in (3.8) and (3.10) express the difference 

between the length of the bar and the distance of the nodes. The other two equations 

deal with the square of these terms but have the advantage of easy applicability to 

mathematical calculus, as they are simple to differentiate. It should be mentioned that 

other formulations may also be considered. 

3.4 Energy formulations 

3.4.1 Potential energy function for mechanisms 

It has been shown that the kinematic counterpart of equilibrium is the compatibility 

equation. Since the former is derived from the potential energy function of the structure, 

one may try to create a similar function for mechanisms. 

Tarnai (1990) proposed a potential energy function for a system described by n 

generalized coordinates and m constraint equations: 

 ( ) ∑∑
==

Λ+−−=Π
m

k
kk

n

i
iii FQQP

11
 (3.11) 

where the notations are as follows: 

 iP , ni ,,1K=  external load components, 

 iQ , ni ,,1K=  generalized coordinates, 

 iQ , ni ,,1K=  reference coordinates, 
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 kF , mk ,,1K=  kinematic constraints or compatibility equations, 

 kΛ , mk ,,1K=  Lagrange-multipliers. 

The kinematic constraints are derived by differentiating (3.11) with respect to the 

appropriate Lagrange-multiplier: 

 mkFV
k

k

,,1,0 K===
Λ∂
∂ . (3.12) 

Another function was proposed by Géradin (1999) for three-dimensional rigid 

bodies. 

 ∫∫ −−=Π
00

TT

SV

dSdV txbx  (3.13) 

where the first term is the integral of the potential of body forces b over the volume 0V  

and the second term is the integral of the potential of the surface tractions t over the 

surface 0S . x  denotes points in the three-dimensional space. For a planar bar-assembly 

(3.13) reduces to the first term of (3.11) with the coordinate system as the reference. 

The first term of (3.11) does not produce compatibility conditions, thus it cannot be 

used for our investigation. Though the second term incorporates compatibility 

equations, their coefficients are unknown Lagrange-multipliers and hence the potential 

energy is not uniquely defined. The compatibility conditions are obtained by derivation 

with respect to these unknown Lagrange-multipliers. 

3.4.2 A complementary formulation 

However, function (3.13) can lead to a formulation of compatibility conditions if 

restrictions are made on the linkage. Thus we propose a complementary formulation for 

the potential energy function for linkages comprising of bars: 

 ∑
=

=Π
N

i
ii

1
rF  (3.14) 
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where N is the total number of nodes (including foundations). iF  and ir  denote the load 

component and the corresponding coordinates of node i, respectively. The reference 

positions for the coordinates are the coordinate axes. Equation (3.14) is an equivalent 

term of (3.13) if the forces are concentrated on the nodes of the bar-assembly. 

The equilibrium equation and the potential energy function of elastic structures 

shown earlier are formulated assuming that the structure is compatible, i.e. the 

displacement of the structure is equal to the elongation of the spring. As a 
complementary formulation we assume that the external loads and forces ijS  of bar ij 

form an equilibrium system. Thus, for node i we can write: 

 ∑∑
><

−=
ij

ijij
ij

jiiji SS eeF  (3.15) 

where ije  denotes unit vectors of bar ij and the summation includes only bars connected 

to node i. Now (3.14) yields 

 ∑ ∑∑
= >< 



















−=Π

N

i
i

ij
ijij

ij
jiij SS

1

ree . (3.16) 

When differentiating (3.14) with respect to bar force ( )jiS ij <  only iF  and jF  are 

affected. Due to equilibrium of bar ij, iF  in (3.15) has term ijijS e−  while jF  has ijijS e+ . 

The relevant terms in (3.16) then become: 

 KK ++−=++=Π jijijiijijjjii SS rererFrF . (3.17) 

Since by definition, 

 
ij

ij
ij rr

rr
e

−

−
= , (3.18) 

we easily obtain 

 ij
ijS

rr −=
∂

Π∂ . (3.19) 
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which represents the length of bar ij. The compatibility conditions now can be 

formulated as 

 ij
ij

l
S

=
∂

Π∂ . (3.20) 

This formulation is also valid for both Cartesian coordinates and angles as variables. 

The advantage of the formulation of the potential energy function shown above is 

that it applies to various sets of kinematic state variables keeping the same external load 

components since they are eliminated through the equilibrium equations. In (3.11) 

different coordinates correspond to different load components, i.e. using angles would 

require only moments instead of forces. 

In addition our formulation implicitly incorporates equilibrium equations and its 

derivative expresses compatibility condition. In this sense it is a counterpart of the 

potential energy function of structures that automatically satisfies compatibility and its 

derivative expresses equilibrium. However, at the same time it is disadvantageous as it 

is complicated to involve the equilibrium equations implicitly in the formulation of 

(3.14). 

3.4.3 A formulation based on complementary potential 

The second formulation for the potential energy function is proposed here. 

Consider a linear elastic bar-assembly consisting of N members in which member i 

has an internal force iS  and the corresponding elongation is ie . The potential energy 

can therefore be defined as strain energy because there are no conservative forces 

considered in the system: 

 ∑
=

=Π
N

i
iii eSa

1
. (3.21) 

where ia  is constant. (3.21) is essentially a formula for complementary potential energy. 

Because elongation is the difference between the current length and the initial one, i.e. 



 57 

 NiLLe iii ,,2,1,0 K=−=  (3.22) 

and 

 NiebS iii ,,2,1, K==  (3.23) 

there is 

 ∑
=

=Π
N

i
i

i

i S
b
a

1

2 . (3.24) 

Differential of the potential energy function with respect to iS  gives 

 0
2

==
∂

Π∂
i

i

i

i

S
b
a

S
. (3.25) 

Due to (3.22) and (3.23), 

 NiLL ii ,,2,1,0 K==  (3.26) 

which gives the compatibility conditions for constant bar lengths. The differentiation of 

the complementary energy with respect to independent forces yields displacements. 

This formulation is also valid for angles instead of Cartesian coordinates as state 

variables: the coordinates appear as functions of those angles and the compatibility is 

formulated only for the appropriate bars. 

Now write (3.21) in a slightly different form. Instead of the elongations, let us 

eliminate the forces from the energy. Due to (3.23) now we obtain: 

 ∑
=

=Π
N

i
iii eba

1

2 . (3.27) 

This formula is essentially the potential (strain) energy of the system. The length of the 
deformed bar in (3.22) is a function of the kinematic parameters jq  that describe the 

system. Differentiation gives: 

 ( ) ( )∑∑
== ∂

∂
−=−

∂
∂=

∂
Π∂ N

i j

i
iiii

N

i
iiii

jj q
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qq 1

0

1

20 2 . (3.28) 
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At compatible configurations (3.28) is equal to zero because all terms become zero 

due to the expression in the brackets. 

3.4.4 A formulation based on analogy 

Both potential energy functions shown above deal with kinematic and load variables 

similarly to their structural analogue. However, the compatibility conditions of 

mechanisms do not contain load parameters but only kinematic state variables. 

Therefore, we present here a new approach, which attempts to create a function only in 

terms of angles and displacements, etc. 

The basis of the function is the analogous role of the equilibrium and compatibility 

equations. As we have seen demonstrated by the simple structural examples in 

Section 2.2, the equilibrium equation defines a relationship between a displacement 

variable (a generalized coordinate) and the load parameter. In structural mechanics the 

relationship is typically unique, i.e. the displacement φ  is uniquely determined by the 

given load P through a function: ( )Pf=φ . It should be pointed out that in some cases 

more than one different displacements are possible, e.g. in examples shown in 

Figures 2.2(a), 2.3(a) and 2.4(a), equilibrium is achieved with more than one different 

displacement systems under a given load. However, between two equilibrium positions 

the potential energy is not stationary. Hence the displacement-force relationship is 

typically unique in the neighbourhood of the position in question. Stability theory deals 

with the singularities of equilibrium. At bifurcation points more equilibrium positions 

become possible under the critical value of the load and the structure can follow any of 

the equilibrium paths. 

Consider a general four-bar linkage where bar lengths are randomly chosen. Let us 

select the positions of the side links as two state variables α  and β . The relationship 

between the two state variables is given by the compatibility condition. It is usually a 

unique function. One state variable, called output, can be calculated in terms of the 

other, called input: ( )βα f= . Occasionally one input may be linked to two outputs 
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because the position of one side-link may result in two possible positions for the other 

two bars. In a similar way to the structures, the linkage cannot switch between the two 

configurations without straining the bars and hence the extra solution can be easily 

omitted. Only when singularities appear is one state variable is not enough to describe 

all the possible configurations. The implicit compatibility condition should be used. The 

possible configurations are obtained as the solutions of the condition. 

Note that one can choose a larger number of state variables together with appropriate 

conditions to describe a mechanism with one degree-of-freedom, e.g. all Cartesian 

coordinates can be state variables and compatibility conditions are formulated for each 

bar as suggested by Tarnai (1990). However, if the mechanism is not at a singular 

position, it is possible to describe the entire configuration in terms of one suitably 

chosen parameter. 

Now the input and output variables can be paralleled to the load parameter and the 

displacement of the structural system, respectively. It is important to draw the attention 

to the difference between the two systems. While the role of the variable and the load 

parameter of a structure are well defined, the choice of input and output seems to be 

arbitrary. However, a distinction can be made based on the actuation of the mechanism. 

As usually designed to perform some motion, a mechanism can be driven by one of its 

elements, e.g. a side link of the four-bar linkage. The state variable associated with the 

position of the bar is then taken as an input or control parameter. 

Now it is possible to proceed with the comparison. We have seen that the equilibrium 

equation is derived from the potential energy function by differentiating with respect to 

its variable. One might try to create a function for mechanisms that has a similar 

relationship with the compatibility condition. 

Consider that the compatibility can be formulated as in (3.9) or (3.10): 

 ( ) 0, =ηξF . (3.29) 

If ξ  is taken as a variable and η  as a parameter, the potential energy function will have 

the form of 
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 ( ) ( ) ( )ηξηξηξ GdF +=Π ∫ ,,  (3.30) 

where ( )ηG  is a function only in terms of η . 

The actual form of (3.30) depends on the way the compatibility condition is 

formulated. If the square-root form (3.10) is used, the integration yields an enormous 

expression even for a simple linkage such as the parallelogram-shaped mechanism. If 

the square form (3.9) is used, (3.30) has a simpler expression. 

Consider now a different singular behaviour. We have seen that the motion of the 

mechanism can be given in terms of one parameter at regular positions but two state 

variables and a compatibility condition is necessary at singularities. It is also possible to 

create a mechanism that requires more than two state variables at certain configurations. 

Figure 3.12 shows a mechanism which is a compound of two parallelogram-shaped 

four-bar linkages. The most general description of the system requires six Cartesian 

coordinates and five compatibility conditions. A more convenient choice of variables 

defines the three supported bars by angles α , β  and γ  and two compatibility 

conditions have to be written for the coupler bars. 

 ( ) ( ) ( ) 0sinsincoscos, 22
0,1 =−−+−+=−= abbbballF ABAB αβαββα , (3.31) 

 ( ) ( ) ( ) 0sinsincoscos, 22
0,2 =−−+−+=−= abbbballF BCBC βγβγγβ . (3.32) 

The configurations can be given by one parameter typically but a singularity occurs 

at 0=== γβα  where all the bars are aligned similarly to the original four-bar 

Figure 3.12: Parallelogram-shaped seven-bar mechanism compiled of two four-bar units. Bifurcation
occurs when all bars are aligned.
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linkage. At this position all three state variables have independent infinitesimal degrees-

of-freedom; consequently all of them are required. 

Note that (3.31) is independent of γ  as well as (3.32) is independent of α . Due to 

this it is possible to formulate a function similar to (3.30): 

 ( ) ( ) ( ) ( )βγγβαβαβγα GdFdF ++=Π ∫∫ ,,;, 21  (3.33) 

where β  is assigned the parameter and the others are the variables. G is a function in 

terms of the parameter only. Now the compatibility conditions express that the gradient 

of (3.33) is zero: 

 ( ) ( ) 0;,,1 =
∂

Π∂=
α

βγαβαF , (3.34) 

 ( ) ( ) 0;,,2 =
∂

Π∂=
γ

βγαγβF . (3.35) 

An obvious drawback of the potential proposed here is the lack of physical meaning 

for Π . Furthermore, it is not always possible analytically to obtain integrals. 
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In Section 3.1 a number of examples were given to find the missing parts in the 

analogy. Bifurcations were determined by a close visual inspection of the compatibility 

paths. In this chapter further study on the compatibility paths of mechanisms is 

presented with two major objectives. Firstly, we verify various tools available in order 

to analyse bifurcation points of both equilibrium and compatibility paths 

mathematically. Secondly, we develop analogous forms of the methods used in 

structures for mechanisms. 

The analytical method based on the Jacobian and Hessian matrices of the 

compatibility conditions has been reviewed in Section 2.4.3 and now it is applied to the 

examples introduced in Section 3.1. We also examine the influence of having different 

sets of state variables. Although the method was proposed for analysis of compatibility 

paths, we find that it can be applied to structures. The three examples of equilibrium 

bifurcations in Section 2.2 are used to demonstrate that. We also examine another 

feature of elastic structures, the stiffness matrix, and use it to target singularities, which 

leads to a formulation of an analogous concept for mechanisms. 

With the aid of these methods, a detailed analysis is conducted in Sections 4.1 and 

4.2. Based on the observations made in Chapter 3 and the results of the analytical 

methods, the classification proposed in Section 3.2 is extended to the analysis of points 

of compatibility paths. The relationship between categories of the classification and the 

analytical behaviour of points is established in Section 4.3. 

In addition to these methods, a numerical examination of mechanisms is also 

presented in Section 4.4. It is intended to provide further understanding of the 

singularities of compatibility paths. An algorithm is also shown for the generation of the 

graphs of the compatibility paths. 

4.1 Matrix analysis: the Jacobian and the Hessian 

In Section 2.4.3 we reviewed the use of the Jacobian and the Hessian matrices to 

examine points on compatibility paths. If the rank of the Jacobian at a compatible 
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position is equal to the number of compatibility conditions, the system is a finite 

mechanism. However, if the rank decreases, the compatibility conditions become 

linearly dependent and the Hessian matrix needs to be calculated. If it is definite, the 

system is an infinitesimal mechanism, if it is indefinite and the mechanism preserves its 

mobility, a bifurcation point is obtained, while if it is semidefinite, further examinations 

are required (Tarnai, 1990). 

4.1.1 Mechanisms 

Consider first the kite-shaped mechanism, reproduced here in Figure 4.1(a). A Cartesian 

coordinate system is chosen so that bar OAOB is aligned with axis x and OA is the origin. 

If the four Cartesian coordinates of the mobile nodes are used, three compatibility 

conditions are written as follows: 

 [ ] 0
2
1 22

1
2
11 =−+= ayxF , 

 ( ) ( )[ ] 0
2
1 22

12
2

122 =−−+−= byyxxF , (4.1) 

 ( )[ ] 0
2
1 22

2
2

23 =−+−= byaxF . 

The Jacobian matrix of the system is 
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where [ ]T
321 FFF=F  and [ ]T

2211 yxyx=Q . The rank is 3 except at the critical 

points [ ]T
1 00 baa +=Q  and [ ]T

2 00 baa −=Q . Consider the first point, 

which corresponds to the configuration shown in Figure 4.1(b). The Hessian is 
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where c is a non-zero constant. It is easy to show that two of the eigenvalues are 

positive and the other two are negative: 

 

( ) ( )

( ) ( ) .411
2
1
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
 ++−+==
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 ++++==

bababaee

bababaee

 (4.4) 

Hence H is indefinite and the mechanism is at a bifurcation point. 

Now if the two angles α and β are chosen as state variables instead of x and y, the 

single compatibility condition, formulated for bar AB, becomes 

 ( ) ( )[ ] 0sinsincoscos
2
1 222 =−−+−+= bababaF αβαβ . (4.5) 

The Jacobian now is a 1-by-2 matrix: 

 ( ) ( )[ ]βαββαα −−−−+= sinsinsinsin2 abababaJ . (4.6) 

The rank decreases at ( )0,0 == βα  and ( )π== βα ,0 , identical to the critical points 

obtained using the Cartesian coordinates. Consider again the first one and calculate the 

Hessian matrix, which comprises of the second derivatives of (4.5). 
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Figure 4.1: Kite-shaped four-bar mechanism. (a) General configuration and notations.
(b) Configuration at one of the bifurcation points.
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It is easy to calculate the two eigenvalues: 

 ( ) ( )
T

2222 44
2 



 ++−+++++= bbababbabaae . (4.8) 

The first one is positive while the other is negative thus H is indefinite. Again the 

configuration is a bifurcation point. 

Both sets of state variables led to the same conclusion. Note that in this example only 

the square form of the compatibility conditions has been used in order to deal with 

simple formulas. It has been found that applying the square-root form in (3.8) or (3.10) 

yields the same results. 

We can apply the same matrix analysis to the parallelogram-shaped four-bar linkage 

shown in Figure 2.10(a). It has an asymmetric bifurcation similar to that of the kite-

shaped linkage. The matrix analysis shows the same behaviour at the bifurcation point 

( )0,0 == βα  obtained in Section 2.4.2. 

The third mechanism to analyse is the square-shaped one shown in Figure 4.2(a) with 

the same notations as previously. This mechanism can be obtained as a special case of 

the kite-shape mechanism if ab = . The compatibility equations are: 

 [ ] 0
2
1 22

1
2
11 =−+= ayxF , 

 ( ) ( )[ ] 0
2
1 22

12
2

122 =−−+−= ayyxxF , (4.9) 

 ( )[ ] 0
2
1 22

2
2

23 =−+−= ayaxF . 

The Jacobian matrix of the system is again 

 
















−
−−−−=





∂
∂=

22

12122121

11

00

00

yax
yyxxyyxx

yx

Q
FJ . (4.10) 

The rank decreases at three critical points: [ ]T
1 000a−=Q , 

[ ]T
2 020 aa=Q , [ ]T

3 000a=Q . Our interest is in the third one, which 
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has not been analysed before. It corresponds to the ‘doubly-folded’ configuration shown 

in Figure 4.2(b). At this point the Hessian yields 

 



















=

0010
0001
1000
0100

cH . (4.11) 

where c is a non-zero constant. The eigenvalues are [ ]T1111 −−= ce . Since there 

are both positive and negative elements, H is indefinite and the mechanism is at a 

bifurcation point. 

Again we consider a single compatibility condition in terms of the angles as 

 ( ) ( )[ ] 0sinsincoscos
2
1 222 =−−+−+= aaaaaaF αβαβ . (4.12) 

The Jacobian is a 1-by-2 matrix: 

 ( ) ( )[ ]βαββαα −−−−+= sinsinsinsin2aJ . (4.13) 

The rank decreases at ( )0,0 == βα , ( )π=π= βα ,  and ( )π== βα ,0 . They are 

identical to those obtained earlier. Again we consider only the third point at which the 

Hessian matrix is 

 







=

01
102aH . (4.14) 

Figure 4.2: Square-shaped four-bar mechanism. (a) General configuration and notations.
(b) Configuration at one of the bifurcation points.

(b)(a)
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The two eigenvalues are easy to obtain: [ ]T22 aa −=e  showing that H is again 

indefinite. Hence the configuration is a bifurcation point. 

The last example is the six-bar mechanism presented in Section 3.1.2, see 

Figure 4.3(a). First the Cartesian coordinates are used and the formulation is simplified 

by considering the symmetry of the OAADBOB linkage. Thus there are four 

compatibility conditions and five state variables as shown in Figure 4.3(a). 

 ( )[ ] 011
2
1 2

1
2

11 =−+−= yxF , 

 ( )[ ] 02
2
1 2

21
2
12 =−−+= yyxF , (4.15) 

 ( ) ( )[ ] 02
2
1 2

13
2

133 =−−++= yyxxF , 

 ( ) ( )[ ] 02
2
1 2

13
2

134 =−−+−= yyxxF . 

The Jacobian matrix of the equation system is: 

 



















−−−−
−+−+

−−
−

=





∂
∂=

13133131

13133131

12211

11

0
0

00
0001

yyxxyyxx
yyxxyyxx

yyyyx
yx

Q
FJ  (4.16) 

where the state variables are [ ]T
33211 yxyyx=Q . The rank of J decreases in 

two sets of configurations. The first one occurs when ( ) ( )2,0,0,, 211 −=yyx  

regardless the other variables. It corresponds to a configuration shown in Figure 4.3(b). 

Nodes A and B are at the origin of the coordinate system and the angle α of bars AC is 

arbitrary. 

We obtain the Hessian in terms of 3x  at [ ]T

330 200 yx−=Q : 

 























=







∂
∂=

=

00000
00002
00000
00020
02002

3

3

2

2

0

x
x

c
QQQ

FH  (4.17) 

where c is a non-zero constant. The eigenvalues are: 
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





















+−
++

=

4
4

2
0
0

2
33

2
33

3

xx
xx
xce . (4.18) 

The last two elements have opposite signs thus H is indefinite for any values of 3x  

corresponding to any position of bar AC. As we have seen in Section 3.1.2, only two 

positions, ( ) ( )2,0, 33 =yx  and ( ) ( )2,0, 33 −=yx  are bifurcation points and 

bifurcation does not occur at all of the other positions. Obviously the use of H leads to 

Figure 4.3: Six-bar mechanism. (a) General configuration and notations. (b)-(c) The first and the
second singular configuration. (d) Compatibility paths near the second bifurcation point.

(a) (b)
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an incorrect conclusion in this example. The method erroneously detects bifurcation 

points at the singular configuration shown in Figure 4.3(b). This is due to the additional 

infinitesimal degree-of-freedom that causes the decrease of rank but does not 

correspond to new compatibility path. This infinitesimal mechanism is associated with 

an infinitesimal motion of the linkage in the y direction, see Figure 4.3(b). 

The other position at which the rank of the Jacobian decreases is an extreme position 

mentioned in Section 3.1.2 and shown in Figure 4.3(c): 

 
T

0 22202222222 



 −−−=Q . (4.19) 

The Hessian is 

 























−

−
−

=







∂
∂=

=

20020
02000
00220
20200
00000

0

2

2

c
QQQ

FH  (4.20) 

whose eigenvalues are [ ]T
3232200 −= ce  where c is a non-zero constant. It 

shows that H is indefinite and the position is a bifurcation point. The compatibility path 

is plotted in the coordinate system of y2 and y3 in Figure 4.3(d). 

We can also formulate the problem using two angles shown in Figure 4.3(a): 

[ ]T
31 φφ=Q . The compatibility condition now is 

 ( ) ( ) 02sin2cos2cos22
2
1 2

3

2

31 =



 −+−−= φφφF  (4.21) 

whose Jacobian is 

 ( ) ( )[ ]13311 cos1sin24cos2cos1sin4 φφφφφ −−−=




∂
∂=
Q

J F
. (4.22) 

Again the rank decreases in two sets of configurations. 

Firstly, 01 =φ  and 3φ  is arbitrary which is identical to the previous result. Now the 

Hessian is 
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 







=

00
0cos24 3φH . (4.23) 

It is semidefinite in general and becomes zero-matrix when 23 π±=φ , i.e. at the two 

bifurcation points shown in Figure 3.9(b). That means that further analysis is required to 

determine mobility. 

The other position at which the rank of the Jacobian decreases is also identical to the 

previous result: ( )[ ]T

0 021arccos −=Q . The Hessian now is 

 






 −=
80
0828H  (4.24) 

which is positive definite, hence the mechanism is an infinitesimal mechanism. 

Two sets of different results have been obtained, which can be summarized in 

Table 4.1. 

A few conclusions can be drawn. Firstly, both formulations fail to distinguish the two 

real bifurcation points from the other points. This example clearly shows that the 

Table 4.1: Results of the matrix analysis for the six-bar linkage

Points of interest

Variables Figure 4.3(b) Figure 4.3(c)

Cartesian coordinates

x1, y1, y2, x3, y3

Jacobian has rank
deficiency
Hessian is indefinite
Conclusion: bifurcation

Jacobian has rank
deficiency
Hessian is indefinite
Conclusion: bifurcation

Angles

φ 1, φ 3

Jacobian has rank
deficiency
Hessian is semidefinite
Inconclusive

Jacobian has rank
deficiency
Hessian is definite
Conclusion: infinitesimal
mechanism

Correct answers Bifurcation points at
φ3 = π/2 and φ3 = - π/2,
an infinitesimal mechanism
in addition to the finite one
at all other positions

Bifurcation point
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identification of bifurcations based on Hessian matrices does not always work, even 

with a coordinate system which is able to fully describe the motion of the mechanism. 

The method does not distinguish infinitesimal mechanisms from finite ones. As long as 

two exist at a point, it regards the point as a bifurcation point. Secondly, the two angles 

chosen do not provide enough information about the whole system. At one of the 

singular positions, ( ) ( )( )0,21arccos, 31 −=φφ , an incorrect result has been obtained. It 

is due to the incapability of the two angles 1φ  and 3φ  to describe behaviour of that point 

because node D cannot be given uniquely. Hence a suitable pair should be chosen, e.g. 

3φ  and 4φ  as shown in Figure 4.3(a) or 2y  and 3y  as shown in Figure 4.3(d). 

4.1.2 Structures 

Although the matrix analysis using the Jacobian and the Hessians was first proposed for 

the analysis of compatibility paths, it can also be applied to equilibrium paths of 

structures. Denote Fk as equilibrium equations and the state variables are both the 

displacements and the loads. Both the Jacobian and Hessian matrices can be calculated 

following the procedure described in the previous section. The decrease of rank of the 

Jacobian determines the critical points. If the Hessian matrix is indefinite, then 

bifurcation occurs and if it is semidefinite, further examinations are required. 

Let us now examine a few examples. The first example is the structure shown in 

Figure 2.2(a). The equilibrium equation is 

 0sin =−= φφ kPLE  (4.25) 

where the notations are as in Section 2.2.1 and the state variables are [ ]TPφ=Q . The 

Jacobian matrix of the equilibrium equation is 

 [ ]φφ sincos LkPLE −=





∂
∂=
Q

J . (4.26) 
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The critical point where the rank decreases is easy to obtain: [ ]T
0 0 Lk=Q  which is 

the same as the known critical force and position. At this point the Hessian yields 

 







=








∂
∂=

=
0

0

0

2

2

L
LE

QQQ
H  (4.27) 

whose eigenvalues are [ ]TLL−=e  showing that H is indefinite hence the critical 

point is a bifurcation point. 

It is possible to use a more complicated system of equations if the moment M of the 

spring is added to the state variables. Now the new variables are [ ]TMPφ=Q  and 

there are two equilibrium equations, one for the bar and one for the spring: 

 
.0

,0sin

2

1

=−=

=−=

MkE

MPLE

φ

φ
 (4.28) 

The Jacobian now is a 2-by-3 matrix: 

 







−
−

=





∂
∂=

10
1sincos

k
LPL φφ

Q
EJ . (4.29) 

The rank decreases at the critical point [ ]T
0 00 Lk=Q  which is the same as the 

other one calculated before. The Hessian yields 

 















=








∂
∂=

= 000
00
00

0

2

2

L
L

E

QQQ
H  (4.30) 

and the eigenvalues are [ ]T0LL−=e . This shows again that 0Q  is a bifurcation 

point. 

The second structure is shown in Figure 2.3(a). First, the single equilibrium equation 

is analysed: 

 0cossinsin =−= φφφ LkLPLE  (4.31) 
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where the notations are again the same as in Section 2.2.2 and the state variables are 

[ ]TPφ=Q . The Jacobian matrix of the equilibrium equation is 

 [ ]φφφ sinsin2cos 222 LkLkLPLE +−=





∂
∂=
Q

J . (4.32) 

The critical point where the rank decreases is: [ ]T
0 0 kL=Q  which is the same as the 

known critical force and position. At this point the Hessian again yields 

 







=








∂
∂=

=
0

0

0

2

2

L
LE

QQQ
H  (4.33) 

which is indefinite as the eigenvalues are [ ]TLL−=e . Hence the critical point is a 

bifurcation point as expected. 

Again it is possible to use a more complicated system of equations. The new state 

variable now is the force F in the horizontal spring and the state variable vector is 

[ ]TFPφ=Q . We have two equilibrium equations: 

 
.0sin

,0cossin

2

1

=−=

=−=

φ

φφ

kLFE

FLPLE
 (4.34) 

The Jacobian of the equation system is: 

 







−

−+
=





∂
∂=

10cos
cossinsincos

φ
φφφφ

kL
LLFLPL

Q
EJ . (4.35) 

The rank decreases at the critical point [ ]T
0 00 kL=Q  which is the same as the other 

one calculated before. The Hessian yields 

 















=





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
∂
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2

L
L

E

QQQ
H  (4.36) 

which is again indefinite because the eigenvalues are [ ]T0LL−=e . This shows that 

0Q  is a bifurcation point. 
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The third structure is the asymmetric case shown in Figure 2.4(a). Due to the 

asymmetry, the equilibrium equation is now a more complicated formula: 

 01cossin 02 =





 −−=

d
dkLPLE φφ  (4.37) 

where the notations are the same as in Section 2.2.3, the state variables are again 

[ ]TPφ=Q  and d0 and d are the original and deformed lengths of the spring, 

respectively: 

 φsin22,20 +== LdLd . (4.38) 

The Jacobian of the equilibrium equation is: 

 






 −





 −+=




∂
∂= φφφφ sincos1sincos 3

02402 L
d
dkL

d
dkLPLE

Q
J . (4.39) 

The critical point is obtained at [ ]T2
0

3
0 /0 dkL=Q  which is identical to the known 

critical force and position of the structure. At this point the Hessian is 

 







=








∂
∂=

=
0

0

0

2

2

L
LE

QQQ
H  (4.40) 

which is indefinite as the eigenvalues are [ ]TLL−=e . Hence the critical point is a 

bifurcation point as expected. 

The extended formulation again include two equations and an additional state 

variable which now is the force F in the spring. The equations are: 

 
( ) 0

,0cossin

02

2

1

=−−=

=−=

ddkFE

d
LFPLE φφ

 (4.41) 

whose Jacobian is 
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

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
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10cos
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3

42

d
kL

d
LL

d
FL

d
FLPL

φ

φφφφφ

Q
EJ . (4.42) 

The rank decreases at the critical point [ ]T2
0

3
0 0/0 dkL=Q  which is the same as 

before. The Hessian yields 
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
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









=







∂
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2
kL

E

QQQ
H  (4.43) 

whose eigenvalues are 

 ( )
( )
















++−
+++=

2
13

2
12

2
1111

2
13

2
12

2
1111

HH4HH
HH4HH

0

2
ce . (4.44) 

The last two elements have opposite signs, consequently the Hessian is indefinite and 

the critical point is a bifurcation point. 

4.2 Stiffness matrix method 

One of the methods to deal with singularities of equilibrium paths of structures is the 

concept of the stiffness matrix. The stiffness matrix of a linearly elastic structure is a 

matrix defining the relationship between the forces and the related displacements. If 

geometric or material nonlinearity is considered, the system cannot be characterized by 

a single matrix because the stiffness is different at different displacements. The actual 

stiffness at certain equilibrium positions is the tangent stiffness matrix, which 

establishes the relationship between infinitesimal unit increment of displacements and 

the increment of forces required to maintain equilibrium. In systems where one state 

variable can describe the displacements of the structure, the stiffness matrix is reduced 

to a scalar value. In the following we deal with only such systems. 
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Applying a load parameter to the structure may affect the stiffness of the structure. If 

the load parameter has a critical value, the stiffness becomes singular and the structure 

loses its stability either with a limit point or with a bifurcation. In many cases the 

primary equilibrium path of the structure is straight referring to the original undeformed 

shape of the structure. At a particular value of the load parameter the stiffness becomes 

zero and the equilibrium path bifurcates, e.g. in the case of the three examples discussed 

previously. However, if the critical deformation is not known, the equilibrium equation 

needs to be formulated in addition to the condition of the vanishing of the stiffness. The 

two conditions together yield the critical deformation and load. This is the typical case 

for limit points. 

4.2.1 Structures 

Consider the three structures introduced in Section 2.2. Now we attempt to use the 

stiffness to find the critical value of the load. 

The first structure is a hinged cantilever with a rotational spring shown in 

Figure 2.2(a). At the undeformed shape the equilibrium is satisfied as the vertical force 

is in the axis of the bar. If a small displacement is applied with the load unchanged the 

moment of the external load is not balanced by the moment of the spring, therefore an 

extra dM moment should be added to the spring. The sign of dM is set so that positive 

dM corresponds to positive deformation of the spring. The equilibrium equation at this 

disturbed position is: 

 dMdkdPL −= φφsin . (4.45) 

Since the displacement is infinitesimal, the trigonometric function is replaced by its 

linear approximation, i.e. the first term in its Taylor series: 

 φφ dPLdkdM −= . (4.46) 

The stiffness is now easy to obtain as: 
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 PLk
d
dM −==

φ
K . (4.47) 

The structure loses its stability when the stiffness becomes zero providing the critical 

load 

 
L
kPcr = . (4.48) 

which is identical to the well-known value. 

The second structure is shown in Figure 2.3(a). Now a horizontal dQ force is added 

to the disturbed system to maintain equilibrium: 

 φφφφ dLdQdLdkLdPL coscossinsin −= . (4.49) 

The linear approximation of the trigonometric terms yield 

 dQLdkLdPL −=− φφ 2  (4.50) 

which provides the stiffness of the structure: 

 PkL
d
dQK −==

φ
. (4.51) 

The critical load parameter is obtained as 

 kLPcr = . (4.52) 

The third example is the structure shown in Figure 2.4(a). The equilibrium equation 

of the disturbed structure is 

 φφφ dLdQdL
d
d

kdPL coscos1sin 20 −





 −=  (4.53) 

where dQ is a horizontal force at the top of the bar and d and d0 are defined in (4.38). 

The linear approximation now includes d, which a nonlinear term of dφ. Rearranging 

(4.53) we obtain the stiffness 
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 PkL
d
dQK −==

2φ
 (4.54) 

which becomes zero at the critical load: 

 
2

kLPcr = . (4.55) 

It coincides with the known critical load shown in Section 2.2.3. 

4.2.2 Mechanisms 

A similar formulation is possible for mechanisms as well. Consider a compatibility 

condition written in the form 

 ( ) ( ) 222 ,, lYX =+ βαβα  (4.56) 

where α and β are the kinematic state variables at a compatible configuration, X and Y 

are the Cartesian projections of the distance between the two nodes for which the 

compatibility condition is formulated, and l is the length of the bar between the nodes. If 

a small dα increment of displacement is applied, the length of the bar needs to be 

modified by an appropriate de increment. At the new compatible configuration the 

following equation holds: 

 ( ) ( ) ( )2
22

,, deldYYdXX +=





∂
∂++





∂
∂+ α

α
βαα

α
βα . (4.57) 

Combining the two equations and ignoring the higher-order terms of the infinitesimal 

quantities we obtain 

 
ααα ∂

∂+
∂
∂= YYXX

d
de  (4.58) 

which we define as the analogue of the scalar stiffness property. When 

 0=
αd

de
, (4.59) 
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the mechanism has a singular configuration because (4.59) indicates an (at least) 

infinitesimal motion while the parameter is constant. 

It is important to mention that this stiffness property is mathematically related to the 

Jacobian matrix of the system. If the Jacobian of the single compatibility condition is 

derived, the singularity of the stiffness property is essentially identical to the singularity 

of the corresponding element of the Jacobian. At singular positions this element 

becomes zero. It is also possible to select β  as a variable so that (4.59) becomes 

0=∂∂ βe . This is related to the second element of the Jacobian. 

This method can be applied in two ways. In the first case a compatibility path is 

explicitly known in terms of one of the state variables and the other state variable is 

determined so that singularity occurs. This can be used to find bifurcation points. It is 

similar to the structural approach where the straight path is known. On the other hand, 

limit points can also be identified. In this case compatibility paths are usually not known 

explicitly and the singular configuration is obtained by solving the stiffness condition 

and the compatibility condition simultaneously. 

Consider the kite-shaped mechanism in Figure 2.9(a). At 0=α  the mechanism is 

compatible for an arbitrary β thus the compatibility equation yields equality. Applying a 

small dα disturbance would requiry a small de increment of the bar length. The 

following equation holds: 

 ( )[ ] ( )[ ] ( )222 sinsincoscos debdabdaba +=+−++−+ ααβααβ . (4.60) 

Substituting 0=α  into (4.60) and approximating the trigonometric functions with their 

linear term gives: 

 222 2sin2 ededbdabda +=− βαα . (4.61) 

Ignoring the higher-order terms we easily derive the stiffness 

 β
α

sina
d

edK −== . (4.62) 
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This quantity becomes zero at 0=β  and π=β  which correctly indicates the 

bifurcation points. 

If we assume that no compatibility path is known, then two conditions are to be 

satisfied simultaneously. One of them is the compatibility equation in terms of � and � 

and the other one states that the stiffness equals zero, which is now a more complicated 

expression: 

 ( )( ) 0sinsin =−+== βαα
α

ba
b
a

d
deK . (4.63) 

The solutions are ( )0,0 == βα  and ( )π== βα ,0  providing the bifurcation points. 

The parallelogram-shaped and the square-shaped four-bar linkages can be analysed 

in the same way. The method indicates the bifurcation points similarly to the kite-

shaped linkage. 

The last example to consider is the six-bar mechanism. Perturbing the compatibility 

condition of the mechanism (4.21) we obtain the equation 

 ( )[ ] [ ] ( )22

3

2

311 2sin2cos2dcos22 de+=+++− φφφφ . (4.64) 

The 01 =φ  configuration is again compatible. Substituting this into (4.64) and 

approximating the trigonometric terms we obtain 

 2220 dede +=  (4.65) 

which shows that the stiffness is zero at any value of 3φ . Since only two points are 

bifurcation points, we have the same problem as given by the Jacobian matrix in the 

previous section. 

If the compatibility is not used implicitly, the stiffness condition yields: 

 ( )( )311
1

coscos12sin2 φφφ
φ

−−==
d
deK  (4.66) 

which becomes zero if 
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 0sin 1 =φ , (4.67a) 

or 

 ( )13 cos12cos φφ −= . (4.67b) 

From the compatibility condition (4.21) we obtain 

 0sin 1 =φ , (4.68a) 

or 

 ( )13 cos1
2

1cos φφ −= . (4.68b) 

It shows again that the 01 =φ  branch of the compatibility path is entirely singular but 

there is no other singular point because equations (4.67b) and (4.68b) have no common 

points apart from 01 =φ . Thus the result is the same as obtained before. 

4.2.3 Limit points 

Singularities occur at limit points as well. The stiffness can be used to identify limit 

points on both the equilibrium path and compatibility path. Consider first the structure 

shown in Figure 2.3(a). If a small eccentricity ε is applied to the load, the equilibrium 

path will have a limit point as shown in Figure 2.3(b). This point can also be determined 

as follows. 

As the location of the load is different the equilibrium equation now is 

 ( ) φφφεφ cossincossin 2kLLP =+ . (4.69) 

Dividing (4.69) by φcosL  and rearranging we obtain 

 
L

kLP
εφ
φ

+
=

tan
sin . (4.70) 
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Applying an infinitesimal φd  increment of the displacement, the equilibrium is 

perturbed and an infinitesimal dQ force acting in the direction of the spring is needed. 

The equilibrium of the perturbed position is: 

 ( ) ( )( ) ( ) ( ) ( )φφφφφφφφεφφ ddQLddkLddLP +−++=+++ coscossincossin 2 . (4.71) 

Again rearranging we obtain: 

 ( ) ( ) dQdkL
L

dP −+=





 ++ φφεφφ sintan . (4.72) 

Consider the following linear approximations: 

 ( ) φφφφφ cossinsin dd +≈+ , (4.73a) 

 ( ) ( )φφφφφ 2tan1tantan ++≈+ dd . (4.73b) 

Substituting (4.73) into (4.72) and subtracting (4.70) yield 

 ( ) dQdkLdP −=+ φφφφ costan1 2  (4.74) 

from which the stiffness is obtained as 

 ( )φφ
φ

2tan1cos +−== PkL
d
dQK . (4.75) 

Applying the trigonometric equality 

 
φ

φ 2
2

cos
1tan1 =+  (4.76) 

to (4.75) it is easy to get the load parameter in terms of φ where the stiffness is zero: 

 φ3coskLP = . (4.77) 

We combine the equilibrium condition (4.70) and the stiffness condition (4.77) to 

eliminate the load. A trigonometric transformation yields 



 84 

 φε 3tan=
L

. (4.78) 

For a given imperfection the limit point occurs at the displacement 

 







= 3

cr arctan
L
εφ . (4.79) 

Again using the trigonometric equality (4.76) we obtain the critical load parameter from 

(4.77): 

 2332cr

1 















+

=

L

kLP
ε

. (4.80) 

A similar analysis can be done for mechanisms. Consider the paralellogram-shaped 

mechanism in Figure 2.9(a) with a small imperfection ε in bar OAA. The compatibility 

equation of the mechanism is 

 ( )[ ] ( )[ ] 222 sinsincoscos abbbba =+−++−+ αεβαεβ . (4.81) 

Expanding the square terms (4.81) is simplified to 

 ( ) ( ) ( ) ( ) 0cos2cos2cos222 =−+−+−+++ βαεαεβε bbbaabbb . (4.82) 

Applying a small increment dα to the angle α will require a small increment de of the 

length of bar AB. A new equation is formulated to maintain compatibility in the 

modified position: 

 ( ) ( )[ ] ( ) ( )[ ] ( )222 sinsincoscos deadbbdbba +=++−+++−+ ααεβααεβ . (4.83) 

Again expanding (4.83) and subtracting (4.81) the stiffness condition is obtained: 

 ( )( ) 0sinsin =−++== βααε
α

ba
a

b
d

edK . (4.84) 
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The solution of (4.81) and (4.84) yields the limit point(s) of the mechanism though it 

can be calculated only numerically. However, the problem can be reduced to a one-

varibale equation by expressing β from (4.84) and substituting it to (4.81). 

4.3 Extension of classification 

In Chpater 3 we have introduced a classification system which groups the points of 

compatibility paths into five categories according to their behaviour. With the aid of the 

matrix method discussed in Section 4.1, singularities of compatibility paths are further 

analysed. 

In order to obtain the planar plot of the compatibility paths of a mechanism, a single 

compatibility condition needs to be formulated in terms of two kinematic state 

variables. Such a compatibility function is written for a particular bar of the linkage and 

can be plotted over the coordinate plane ( )ηξ , : 

 ( ) 0, =ηξF . (4.85) 

The compatibility function defines a surface ( )ηξ ,Fz =  in the three-dimensional space 

( )z,,ηξ  over the coordinate plane ( )ηξ , . Now the Jacobian matrix is the gradient of the 

compatibility function (4.85), which is related to the tangent plane. The Hessian matrix 

consists of the second derivatives hence is related to the curvature of the surface. 

At common points of the coordinate plane 0=z  and the surface, (4.85) is satisfied 

referring to compatible configurations. The intersections can be of various forms 

resulting in different types of mobility that a mechanism may have: 

(a) The compatibility function has one common point with the coordinate plane in the 

neighbourhood of the point: the variation of surface is of higher-order (at least 

second-order), and an infinitesimal mechanism is obtained. 
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(b) The compatibility function intersects the coordinate plane with a non-zero tangent: 

a compatibility path is formed and the compatibility condition has a first-order 

variation (and higher) in any direction not parallel to the path. 

(c) The compatibility function intersects the coordinate plane with a zero tangent: a 

compatibility path is formed and the compatibility condition has an odd-order 

variation (and higher) in any direction not parallel to the path. 

(d) The compatibility function touches the coordinate plane: a compatibility path is 

formed, tangent is zero and the compatibility condition has an even-order variation 

(and higher) in any direction not parallel to the path. 

A set of corresponding schematic plots are given in Figures 4.4(a)-(d), respectively. 

In the vicinity of a given compatible position the above cases can either occur 

separately, or some of them can form various different combinations, which are listed 

below. The corresponding local forms of the compatibility function around that 

Figure 4.4: Local shapes of the compatibility paths. (a) Infinitesimal mechanism. (b) Finite
mechanism. (c)-(d) A finite and an infinitesimal mechanism. (e)-(f) Two finite mechanisms.

 (a)

 (f) (e) (d)

 (c) (b)

 z

 z
 z

 z

 z z
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particular point are schematically plotted in Figure 4.4(e)-(f), respectively. The vertical 

axis of the coordinate system is associated with z. The other two indicate the plane 

0=z  where the orientation of the axes with respect to the surface is indifferent. The 

notations of Figure 4.4 match those of the list: 

(a) The value of the compatibility function has the same sign except at the point in 

question where it is zero. The surface has a tangent plane identical to plane 0=z . 

The bar-assembly is an infinitesimal mechanism at that point. In the simplest case 

the Hessian matrix of the compatibility conditions is definite. If the compatibility 

condition fits to the coordinate plane with higher-order, then the mechanism is 

infinitesimal to a higher-order and the Hessian becomes semidefinite or zero matrix. 

The two-bar linkage shown in Figure 2.8(b) is an infinitesimal mechanism of the 

first-order. 

(b) The compatibility function intersects plane 0=z  at one line with a non-zero 

tangent. The Jacobian has no rank deficiency and the bar-assembly is a finite 

mechanism. The point is either a regular point or a limit point of a compatibility 

path. A regular point can occur in two cases: either both elements of the Jacobian 

are non-zero or the compatibility path is straight and parallel to a coordinate axis. In 

this latter case one state variable is constant and the first derivative is zero. If the 

point is a limit point, one of the elements of the Jacobian becomes zero but the state 

variable is not constant. Examples for regular points and limit points are provided 

by the parallelogram-shaped linkage in Figure 2.10, etc. The straight regular 

compatibility path is demonstrated by the kite-shaped linkage in Figure 2.9. 

(c) The compatibility function touches the coordinate plane at a line that passes through 

the point. The tangent plane is identical to the coordinate plane. The surface is even-

order at the point in directions other than that of the line. The bar-assembly has a 

finite mechanism and infinitesimal one the order of which depends on the order of 

the surface. The point exhibits a split-vanish phenomenon. The Jacobian is zero and 
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the Hessian is either semidefinite or zero. An example of this case is given where 

the six-bar linkage is in a singular position but not at the bifurcation points, see 

Figure 3.6(b). The Hessian is semidefinite here indicating that an additional 

infinitesimal mechanism of the first-order exists further to the finite mechanism 

represented by the straight compatibility path. If the Hessian is zero, then the 

infinitesimal mechanism is of higher-order. No example has been found for this 

case. 

(d) The compatibility function intersects the coordinate plane at a line that passes 

through the point. The tangent plane overlaps plane 0=z . The surface is odd-order 

at the point. Again the bar-assembly has a finite mechanism and infinitesimal one 

that is at least second-order. The order depends on the order of the surface. 

Examples have yet to be found for this case. 

(e) The compatibility function intersects plane 0=z  at two lines with non-zero 

tangent. The lines intersect each other at the point, which is a saddle point. The bar-

assembly has two finite mechanisms. The Jacobian matrix is zero and the Hessian 

matrix is indefinite at this point. The bifurcation points of the kite-shaped four-bar 

linkage, see Figure 2.9(a) or the parallelogram-shaped four-bar linkage, see 

Figure 2.9(a) are simple examples of this case. 

(f) The compatibility function intersects plane 0=z  at a line with a non-zero tangent 

and touches it at a line with a zero tangent. The lines intersect each other at the 

point. Again the bar-assembly has a bifurcation point with two finite mechanisms. 

The point is a split-vanish bifurcation point. Both the Jacobian and the Hessian is 

zero. This case occurs at the symmetric bifurcation points of the six-bar linkage 

shown in Figure 3.6(a). 

(g) The compatibility function intersects or touches plane 0=z  at two lines with 

higher-order. The lines intersect each other at the point. Again the bar-assembly has 
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a bifurcation point with two finite mechanisms. There are several combinations 

depending on the order though no mechanism examples are given yet. 

Irregular compatibility paths contain split-vanish points. At split-vanish points the 

Jacobian has a rank deficiency and the Hessian becomes semidefinite or zero. Points in 

(c) and (f) indicate that the Hessian may be insufficient to distinguish between general 

split-vanish points and split-vanish bifurcation points. 

The split-vanish phenomenon demonstrated by the six-bar mechanism exhibits some 

useful mathematical insights. Firstly, the split-vanish compatibility path is vertically 

straight and parallel to the coordinate axis of a control parameter. Hence the derivatives 

of the compatibility condition with respect to the variable in form of the Hessian matrix 

provide further information. The Hessian is semidefinite except at the bifurcation points 

where it becomes zero. This condition may serve as a distinction between a general and 

a bifurcation point. 

Though it has not been demonstrated by examples in all cases, a few hypothetical 

cases need to be considered which the Jacobian and the Hessian are insufficient to 

distinguish. 

Firstly, if the Hessian is definite, the point of the surface is a local maximum or 

minimum and the mechanism is first-order infinitesimal. However, there are higher-

order hilltop points where the Hessian becomes zero. Such points correspond to 

infinitesimal mechanisms of higher-order. 

Secondly, if the Hessian is indefinite, the surface is a saddle and the mechanism has a 

bifurcation point. The compatibility paths emanate from the point along the asymptotic 

lines (infinitesimally). Again, it is possible to have higher-order saddle points where the 

surface fits the zero plane to a higher-order. The Hessian may become zero at the 

bifurcation point. 

It is also possible to have a surface with various higher-order behaviour that are 

neither of the cases above. In all these cases the Hessian becomes zero and hence not 

suitable for any classification. 
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Thirdly, the surface may be higher-order near a straight compatibility path even 

though there is no bifurcation. If the surface is first-order, a regular compatibility path is 

obtained, such as in case of the kite-shaped mechanism. If it is second-order, a split-

vanish phenomenon occurs as seen for the six-bar mechanism. It may also be possible to 

find surfaces that produce compatibility paths at higher-order. If it is odd-order, the path 

cannot vanish. On the other hand, if it is even-order, it is possible to perturb the system 

so that the split-vanish phenomenon occurs. Again, the Hessian is zero in these cases. 

Finally, we may consider the case when the compatibility path is not straight though 

the surface exhibits higher-order behaviour. Numerical methods may be needed for 

further examination. 

It is important to emphasize again that most of the several kinds of higher-order 

behaviour listed above are hypothetical in a sense that no mechanism representations 

have been given yet. Whether such physical cases exist is yet to be justified or falsified. 

An exception of the above list is made by the higher-order infinitesimal mechanisms 

whose existence is well-known. It seems also likely to be possible to find mechanisms 

that can produce higher-order split-vanish phenomenon. Further research is needed 

along this line. 

To determine the properties of a critical point according to what has been discussed 

here, a procedure is proposed as follows: 

(a) Formulate the compatibility condition in terms of the two state variables as 

( ) 0, =ηξF  and consider the point ( )00 , ηξP . If P satisfies the compatibility 

condition, the state variables correspond to an existing (feasible) configuration of 

the mechanism. 

(b) Calculate the Jacobian matrix [ ]ηξ ∂∂∂∂= FFJ  and determine whether the rank 

decreases at P. The condition for rank deficiency is 01 =J  and 02 =J . 

(c) If there is no rank deficiency, the point is either a regular point or a limit point. A 

limit point occurs if one of 1J  and 2J  is zero but the compatibility path is not 
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straight (i.e. there is local extremum in the path). A general regular point occurs if 

either both elements of J  are non-zero or P is on a straight path parallel to one of 

the coordinate axes. 

(d) If the rank of J reduces, the Hessian matrix [ ]ηξ∂∂∂= F2H is to be calculated 

at P. 

(e) If the Hessian is definite, P is a distinct point of compatibility and the mechanism is 

infinitesimal of the first-order. If the Hessian is indefinite, P is a saddle point of the 

surface ( )ηξ ,Fz =  and a regular bifurcation point is obtained. If the Hessian is 

semidefinite or zero, the mechanism has a higher-order singularity and further 

viewpoints should be considered. 

(f) If P is not a point of a straight compatibility path 0ξξ = , numerical methods are 

required for further analysis. If it is, the order of the surface in state variable ξ  can 

distinguish between split-vanish points (even-order) and not split-vanish points 

(odd-order). Further distinction between general split-vanish points and split-vanish 

bifurcation points may be made using numerical methods. 

4.4 Computation of graphs of compatibility paths 

Various plots of compatibility paths have been shown so far in this dissertation. Due to 

the nonlinearity of the compatibility conditions, it is not always possible to obtain one 

kinematic state variable in terms of the other analytically. 

A numerical method is presented here to provide an approximate graphical 

representation of the compatibility condition. The steps of this numerical approach are 

as follows: 

(a) Select a region in state variable space ( )ηξ ,  within which the calculation is carried 

out. Divide the region by placing an orthogonal grid on the coordinate plane, see 

Figure 4.5(a). 
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(b) Calculate the value of the compatibility function ( )ηξ ,F  at the nodes of the grid. 

The results form a set of discrete points in the three-dimensional space ( )z,,ηξ  

where ( )ηξ ,Fz = , see Figure 4.5(b). 

(c) Fit an approximating two-variable function to the calculated values. It is most 

practical to apply linear approximation, that is to use linear interpolation in the grid 

elements between the nodes, see Figure 4.5(c). 

(d) Equilibrium or compatibility positions are represented by zero points and lines of 

the equilibrium or the compatibility function, that is by the intersections of the 

surface with plane 0=z . The zero lines are approximated by the intersections of 

the approximation multi-linear surface and the coordinate plane, see Figure 4.5(d). 

The steps of this method can easily carried out by most programming languages, e.g. 

MATLAB, Version 6.1 (The Mathworks, Inc., 2001). 

Figure 4.5: Numerical approximation of compatibility paths. (a) A rectangular grid is created on the
state variable plane. (b) The compatibility condition is evaluated at the discrete grid points. (c) An

approximate (linear) function is fitted to the values. (d) Zero positions are calculated.

 ξ
 η

 z

 ξ

 η
 z

 ξ

 η
 z

 ξ

 η
 z

 (a)

 (c)  (d)

 (b)



 93 

The method applies to mechanisms with both perfect and imperfect geometry. In 

case of imperfect geometry the constraint condition is formulated and fed into the 

algorithm accordingly. In fact, the compatibility paths shown in Figures 2.9(a), 2.10(b), 

3.2, 3.4(b), 3.7(a), 3.8(b), 3.11(b) and (c) were obtained by this method. 

Though it provides a good overview on the behaviour of the mechanism, the method 

is an approximate one. While it is expected to give satisfactory results at general 

positions, such as in Figure 4.4(b), it might fail to give good approximation in the 

neighbourhood of bifurcation points where more lines are present. Some particular 

types of singularities may require a special approach, e.g. in the presence of 

infinitesimal mechanisms as seen in the six-bar linkage. 

At singular positions the general approximation method could fail for a few reasons. 

One case can be that the approximation could not distinguish between two crossing 

lines and two non-intersecting lines passing close to each other. An example is given in 

Figure 4.6 showing two different approximations for the same set of points. In the first 

case the discrete points are approximated by two crossing curves while in the other case 

the neighbouring branches are connected forming two separate curves. 

Another case where the approximate method may fail to find a path occurs when the 

compatibility surface touches the coordinate plane without intersections, i.e. a 

maximum or minimum is reached at 0=z . A cross-section of the compatibility surface 

is shown in Figure 4.7. If the zero point is inside a grid element, as shown in 

(a) (b)

Figure 4.6: Approximations of paths at bifurcation points with the same set of points. (a) The two
curves intersect. (b) The curves pass by near each other.
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Figure 4.7(a), the evaluated values at the grid points are the same sign, hence the linear 

approximation fails. In the special case of having a compatibility path fitting to a grid 

point or a grid line exactly, the compatibility surface will have an extremum 0=z  at 

that grid point, as shown in Figure 4.7(b). Now the method could also fail to find it due 

to the limited floating point accuracy of the computation. 

Further to this, one might need to calculate the compatibility paths in a selected 

region of the state variable space more precisely. In order to do that the numerical 

method introduced earlier can be enhanced in a number of ways. 

The simplest way of increasing the accuracy of the computation of the paths is to 

refine the grid. It increases the computational cost at a square rate, therefore the 

recommendation is to use it only for the close neighbourhood of the singular point. The 

practical limit of the refining is set by the floating point accuracy of the programming 

language applied. It is usually in the range of 10 to 20 digits though there exist packages 

for significantly higher precision. 

Another way is to replace the linear approximation with a higher-order one. In the 

case where a compatibility path crosses a grid line, the intersection point can be 

calculated with higher precision by evaluating more values of the compatibility 

condition along the line and fitting a higher-order polynomial curve. Moreover, the 

Newton-Raphson procedure can also be used to iterate the zero point as the derivatives 

of the compatibility condition are often available. 

Figure 4.7: (a) Zero point inside a grid element. (b) Zero point at a grid point.
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If the compatibility path touches the coordinate plane without intersection, this 

approach will fail. It is a degenerate case where the approximate curve may have more 

zero points or none at all. The exact solution is a limit situation between the two. To 

find it we have to exploit the fact that the zero point is an extremum at the same time. 

This extremum point can be approximated to any precision within the range of the 

floating point accuracy. If the difference between the extremum and zero is larger than 

the computational limit in magnitude, then there is no solution. If the extremum 

approaches zero within this range, the point can be called a solution. However, to find 

an ‘exact’ solution, infinite precision would be required, which is numerically 

impossible. Therefore we have to bear in mind that not only the position but the 

existence of the zero point is also subject to numerical error. In this case a sensible 

approach is to examine the mechanism configuration to determine whether it is feasible 

or not. This behaviour can be demonstrated by the six-bar linkage whose straight path is 

generated where the compatibility surface touches the plane 0=z .  

The existence of compatibility paths around a singular point can be studied by 

examining the shape of the compatibility surface. At a regular bifurcation point the 

surface is an ordinary saddle and in the neighbourhood of the point the quadrants of the 

surface are positive and negative alternately. A cross-section of the surface through the 

bifurcation point in any given direction can be expanded into Taylor series. The first 

non-zero term of the series defines the sign of the surface in the small vicinity of the 

point. 

For any smooth surface, if the surface is positive and negative in two chosen 

directions, then there is a compatibility path (or more) in the section between the two 

directions. It is due to Bolzano’s intermediate value theorem (Bolzano, 1817; James, 

1992). The exact direction of the path is the limit position between the positive and 

negative sections of the surface. It can be located by the sign change of the first non-

zero term in the Taylor series. 

Other paths are obtained where the compatibility surface touches the tangent plane 

without intersection. This case is observed at the straight compatibility path of the six-
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bar linkage. The path separates sections with the same sign thus the first non-zero term 

does not change sign. However, all terms disappear in the Taylor series in the direction 

of the line because the compatibility is fulfilled in that particular direction. Though no 

mechanism example has demonstrated different behaviour, we still need to consider the 

hypothetical case when the path is not straight. Now the compatibility is not fulfilled in 

the direction of the tangent of the path at that point hence the Taylor series has higher-

order non-zero terms and this condition does not hold. 

Finally, if the rank deficiency of the Jacobian occurs but only one compatibility path 

exists, then an infinitesimal mechanism must appear, see Figure 4.4(c) and (d). Again 

create a section of the surface in any direction other than the compatibility path and 

expand the function into Taylor series. If the first non-zero term is the nth, the 

mechanism is infinitesimal of the order n-1. 
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In this chapter a new approach to the compatibility of mechanisms is presented. Firstly, 

it is summarized why the analysis previously shown might not always be sufficient. 

Secondly, elementary catastrophe theory is introduced followed by its applications in 

kinematics of mechanisms. 

5.1 Problem statement 

Chapters 2 and 3 contain compatibility paths of various mechanisms. These paths 

depend on kinematic state variables chosen to describe the motion. They can be 

Cartesian coordinates of nodes, or angles. Hence, when the number of state variables is 

greater than two, a multi-dimensional space is required to plot the compatibility paths. 

It has also been pointed out in Section 4.1 that different sets of state variables may 

not always serve equally. Consider the six-bar mechanism introduced in Section 3.1.2, 

shown here again in Figure 5.1(a). As we have seen, angles 1φ  and 3φ  are sufficient to 

describe the motion of the linkage around one of the symmetric bifurcations shown in 

Figure 5.1(b). If angle 1φ  is replaced with 1y , which is the y coordinate of node A, the 

resulting compatibility paths are essentially the same as the original ones, see 

Figure 5.1(c). On the other hand, if 1x , the x coordinate of node A, is chosen, the graph 

becomes different, see Figure 5.1(d). The symmetric bifurcation is not visible because 

1x  is not suitable to show the behaviour. 

Simple examples like this demonstrate that different parameter sets have different 

validity and no obvious choice can be obtained automatically. 

Similar problems appear in the stability theory. Different sets of state variables 

provide different equilibrium paths, which may even become fundamentally different. 

For example, in buckling of a cylindrical shell, if the vertical force and the longitudinal 

compression are chosen as state variables, the planar plot of the compatibility paths is 

characteristically different from the three-dimensional one obtained by including a third 

state variable, the radial displacement, see Figure 5.2 (von Kármán and Tsien, 1941). 
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Figure 5.1: A six-bar mechanism. (a) Basic structure. (b)-(d) Compatibility paths obtained using three
different parameter sets.
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Figure 5.2: Buckling of cylindrical shell under axial load. (a) Structure. (b) Axial and radial
deformations. (c)-(d) Equilibrium paths.
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The question arises what the relationship between the various compatibility paths is 

and how to chose state variables so that the plot represents the essential behaviour of the 

mechanism. By reducing the number of state variables the graph obtained is a projection 

(or a transformation) of a more general case. The state variables should be chosen to 

describe the position of all nodes of the mechanism uniquely so that the projections 

preserve all characteristics of the compatibility path. For example, in the parallelogram-

shaped mechanism the angle is more suitable to define a node than the Cartesian 

coordinate because other coordinates and distances derived from the latter are multi-

value functions. 

Another concern is the behaviour of structures and mechanisms with imperfections. The imperfect 

equilibrium paths of the three structure examples are given in Section 2.2, see Figures 2.2(b), 2.3(b) and 

2.4(b). We have addressed this issue in Section 2.4.1 where similar problems occur for mechanisms. 

Due to these problems, the graphs of equilibrium or compatibility paths may not be 

sufficient to reveal the true nature of the behaviour of the object we study. A new 

approach is required, which, in the stability theory of structures, is provided by the 

application of the elementary catastrophe theory. A brief introduction of it has been 

given in Section 2.3. Hence in this chapter we apply the catastrophe theory to the 

bifurcations of compatibility paths of mechanisms. Two concepts are proposed: the first 

is based on the analogy between compatibility and equilibrium, the second one utilizes a 

potential function introduced in Section 3.4.3 for the classification of singularities. 

5.2 The analogy concept 

5.2.1 Basic technique 

In the stability theory, the equilibrium of elastic structures is the gradient of the total 

potential energy function. Critical points of the equilibrium paths are classified by the 

local form of the potential energy (Thom’s theorem). 
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We propose to classify compatibility conditions on the basis of the analogy between 

equilibrium and compatibility. As the equilibrium equation is derived from the potential 

energy function, equilibrium forms can be derived from the canonical forms listed in 

Thom’s theorem. That is, if the structure exhibits a certain catastrophe type, the 

equilibrium equation is locally equivalent to a corresponding form, see Tables 5.1 and 

5.2. 

Therefore we shall call a singular position of a mechanism equivalent to a 

catastrophe type if the compatibility condition is locally equivalent to the equilibrium 

forms of that particular catastrophe. For example, consider any of the mechanisms with 

two kinematic state variables and one compatibility condition shown in the previous 

chapters. If the compatibility condition at a bifurcation point can be transformed to the 

first, second, etc. equilibrium form in Table 5.1, then the mechanism is equivalent to the 

fold, the cusp, etc., respectively. 

Although we presented the equivalent energy formulation for mechanisms in 

Section 3.4, the forms are difficult to handle mathematically. This is the reason why we 

opt to use the equilibrium forms of Thom’s theorem rather than the canonical forms. 

In the following analysis, for problems with a single compatibility condition and two 

state variables, we also designate one as a variable while the other as a control 

Table 5.1: Canonical and equilibrium forms for the cuspoid catastrophe types listed in Thom’s
theorem.

Type  Canonical form ( )f  Equilibrium form ( )
1uf

 A2 11
3
1 utu + 1

2
13 tu +

 A3 ( )11
2
12

4
1 ututu ++± ( )112

3
1 24 tutu ++±

 A4 11
2
12

3
13

5
1 utututu +++ 112

2
13

4
1 235 tututu +++

 A5 ( )11
2
12

3
13

4
14

6
1 ututututu ++++± ( )112

2
13

3
14

5
1 2346 tutututu ++++±

 A6 11
2
12

3
13

4
14

5
15

7
1 utututututu +++++ 112

2
13

3
14

4
15

6
1 23457 tututututu +++++
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parameter because they are related by the compatibility condition. At a bifurcation point 

the compatibility condition is expanded into Taylor series. After a suitable linear 

transformation, forms similar to one of the equilibrium forms in Table 5.1 can be 

obtained. The designation of the variable and the control parameter will be discussed in 

detail in Section 5.5. 

If two compatibility conditions and three state variables are needed at a bifurcation 

point, then two equilibrium forms are derived. Now they are compared to those in 

Table 5.2. 

This method is in accordance with the wider concept of the catastrophe theory. 

Gilmore (1981) states that “Catastrophe Theory attempts to study how the qualitative 

nature of the solutions of equations depends on the parameters that appear in the 

Table 5.2: Canonical and equilibrium forms for the umbilic catastrophe types listed in Thom’s
theorem

Type  Canonical form ( )f  Equilibrium forms ( )
21

, uu ff

 D4
-

 1122
2
13

3
22

2
1 utututuuu +++−  11321 22 tutuu ++

 2
2
2

2
1 3 tuu +−

 D4
+

 1122
2
13

3
22

2
1 utututuuu ++++  11321 22 tutuu ++

 2
2
2

2
1 3 tuu ++

 D5  ( K+++± 2
24

4
22

2
1 utuuu

 )1122
2
13 ututut +++K

 ( )11321 22 tutuu ++±

 ( )224
3
2

2
1 24 tutuu +++±

 D6
-

 K+++− 2
24

3
25

5
22

2
1 ututuuu

 1122
2
13 ututut +++K

 11321 22 tutuu ++

 224
2
25

4
2

2
1 235 tututuu +++−

 D6
+

 K++++ 2
24

3
25

5
22

2
1 ututuuu

 1122
2
13 ututut +++K

 11321 22 tutuu ++

 224
2
25

4
2

2
1 235 tututuu ++++

 E6  ( K++++± 2
24

2
215

4
2

3
1 utuutuu

 )1122213 ututuut +++K

 ( )123215
2
1 23 tutuutu +++±

 ( )21324215
3
2 224 tututuutu ++++±
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equations”. In stability theory the number and type of equilibrium positions are 

investigated subject to given parameters (load, imperfections, etc.). Mathematically the 

problem reads as how many solutions the equilibrium equations may have in terms of 

the parameters in the equations. If a structure exhibits a cuspoid catastrophe of type Ak 

at the critical value of the load parameter, the equilibrium equation is kth order. It 

implies that with a suitable small perturbation the equation can yield k solutions in the 

small vicinity of the critical point. For example, the asymmetric structure in 

Figure 2.4(a) exhibits a fold catastrophe point at the critical load. If a small 0<ε  offset 

is applied to the position of the load, the equilibrium paths are obtained, which are 

drawn by dashed thin lines in Figure 2.4(b). In the vicinity of the critical point two 

equilibrium positions exist. 

A similar interpretation is possible for compatibility paths of mechanisms. If the 

compatibility equation is kth order in its variable for a given value of the parameter, the 

system can be modified by a suitable small perturbation so that the compatibility 

equation yields k solutions, i.e. k feasible configurations exist. Based on the analogous 

mathematical and physical behaviour of the two systems, we define such a kinematic 

system equivalent to catastrophe type Ak. 

The compatibility conditions in this analysis can be written in various forms. We opt 

to use both (3.9) and (3.10) given in Section 3.3. In the following both are investigated. 

5.2.2 The kite-shaped four-bar linkage 

Consider first the kite-shaped four-bar linkage shown in Figure 2.9(a). The state 

variables are α  and β ; the compatibility condition is written for the coupler bar AB. 

The square root form is 

 ( ) ( ) ( ) 0sinsincoscos; 22 =−−+−+= bababaF αβαββα . (5.1) 

The bifurcation occurs at 0== βα  where (5.1) is expanded into its Taylor series: 
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 ( ) ( ) K+−+≈ αβαβα aba
b
aF 2

2
1;  (5.2) 

where the ellipsis refers to higher-order terms, which are ignored. Furthermore, a 

semicolon is used in (5.1) and (5.2) to separate the variable and the control parameter. 

These notations are used in similar formulas in the following. Taking α  as a variable, a 

linear transformation is applied to eliminate the mixed term: 

 ( ) βαα
ba

b
baa

b
+

+
+

= 2 . (5.3) 

The new form now is 

 ( ) ( ) K+
+

−≈ 22

2
; βαβα

ba
abF  (5.4) 

The second term is regarded as a new parameter 1t  in order to match the equilibrium 

form in the first row in Table 5.1. Hence the bifurcation point is equivalent to the fold 

catastrophe. Note that the actual magnitude of the coefficient of the characteristic term 

is irrelevant, the linear transformations in this analysis are chosen to obtain unity. 

Let us extend the investigation to the imperfect system perturbed by geometric 

imperfections. Let 1ε , 2ε , 3ε  and 4ε  denote the length errors for bars OAOB, OBB, AB 

and OAA, respectively. The compatibility condition now is 

 ( ) ( ) ( ) 0sinsincoscos; 3
2

42
2

421 =−−+−+= bababaF αβαββα  (5.5) 

where 11 ε+= aa , 44 ε+= aa , 22 ε+= bb  and 33 ε+= bb . The Taylor series expansion 

gives 

 ( ) ( ) K+−−++−+≈ 4321
2

2
1; εεεεαβαβα aba

b
aF  (5.6) 

We apply the same linear transformation as above. The compatibility condition has now 

the form 

 ( ) ( ) K+−−++
+

−≈ 4321
22

2
; εεεεβαβα

ba
abF  (5.7) 
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and the new parameter to be introduced is 

 ( ) 4321
2

1 2
εεεεβ −−++

+
−=

ba
abt . (5.8) 

Note that in (5.4) the parameter can take only non-positive values due to 2β . By 

introducing the geometric imperfections, 1t  may become positive in (5.8). 

It clearly shows that the bifurcation point is related to the fold catastrophe. 

Now let us investigate the implication of using a different form of compatibility 

condition. Consider the square form of the compatibility condition with imperfections 

included: 

 ( ) ( )[ ] 0sinsincoscos
2
1 2

3
2

42
2

421 =−−+−+= bababaF αβαβ . (5.9) 

The Taylor series expansion at the bifurcation point gives 

 ( ) ( ) K+−−++−+≈ 4321
2

2
1; εεεεαβαβα bbbbabbaaF  (5.10) 

Again a linear transformation is needed: 

 ( ) βαα
ba

b
baa +

+
+

= 2 . (5.11) 

resulting in the compatibility condition 

 ( ) ( ) K+−−++
+

−≈ 4321
2

2
2

2
; εεεεβαβα bbbb

ba
abF  (5.12) 

Assigning the sum of all but the first term in (5.12) a new parameter 1t , the equilibrium 

form related to the fold catastrophe is obtained again. Hence both formulations of the 

compatibility condition show the same behaviour. 

A similar analysis can be carried out for the parallelogram-shaped linkage shown in 

Figure 2.10(a). It shows that the asymmetric bifurcation point is associated with the fold 

catastrophe. These two mechanisms are the kinematic counterparts of the asymmetric 

structure shown in Figure 2.4(a), which exhibits the fold catastrophe as well. 
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5.2.3 The square-shaped four-bar linkage 

Consider now the square-shaped four-bar linkage shown in Figure 3.8(a). It comes as a 

special case of the previous examples with all bars being identical. The state variables 

are α  and β  again and the compatibility condition is written for the coupler bar AB: 

 ( ) ( ) ( ) 0sinsincoscos; 22 =−−+−+= aaaaaaF αβαββα . (5.13) 

The bifurcation point we are interested in is at ( )π,0 == βα  where two straight 

compatibility paths intersect. The Taylor series expansion gives: 

 ( ) K+−−−≈ 3223 ~
6
1~

4
1~

6
1~; βαβαβαβαβα aaaaF  (5.14) 

where β~  denotes the local state variable: π−= ββ~ . The Taylor series has no pure 

terms because (5.13) is satisfied along the coordinate axes, i.e. it is an infinitely 

degenerate case. Now consider imperfections similar to the previous example: 

 ( ) ( ) ( ) 0sinsincoscos; 3
2

42
2

421 =−−+−+= aaaaaaF αβαββα  (5.15) 

where ii aa ε+= , 4,3,2,1=i . Omitting the higher-order terms beyond the third, the 

Taylor series expansion gives 

 ( ) ( ) ( ) ( ) K++−+−−+++−≈ 4321
2

411
2

21
~

2
1~

2
1; εεεεβεεβαεαεεβα aF  (5.16) 

A second-order term of the variable appears, resulting in the fold catastrophe. The 

imperfections reduce the infinite degenerateness of the mechanism. 

Consider now the square form of the compatibility condition with imperfections 

included: 

 ( ) ( )[ ] 0sinsincoscos
2
1 2

3
2

42
2

421 =−−+−+= aaaaaaF αβαβ . (5.17) 

The Taylor series expansion at the bifurcation point is calculated again. Omitting the 

higher-order and also the mixed terms of the state variables one obtains: 
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 ( ) ( ) ( ) ( ) −−++++−≈ 2
4142

2
21

~
2
1~

2
1; βεεβαεεαεεβα aaaaF  

 K++−+− 4321 εεεε aaaa  (5.18) 

Again the second-order term of the variable appeared. It is a fold catastrophe. Both 

formulations of the compatibility condition show the same behaviour as they have the 

same characteristic terms with different coefficients. 

5.2.4 The six-bar linkage 

Consider the six-bar linkage shown in Figure 3.1(a). We use two angles with a 

compatibility equation written for bar BC: 

 ( ) ( ) ( ) 02sin2cos2cos22;
2

3

2

3131 =−+−−= φφφφφF . (5.19) 

Expanding (5.19) into Taylor series at the bifurcation point ( )2,0 31 π== φφ  and 

introducing the local variable 2~
33 π−= φφ  gives 

 ( ) K++≈ 2
13

4
131

~
4
2; φφφφφF  (5.20) 

Taking 1φ  the variable, (5.20) is a fourth-order expression. It corresponds to the third 

equilibrium form in Table 5.1, i.e. it is equivalent to the swallowtail catastrophe. In 

order to get all terms in this formula, we introduce geometric imperfections again. It is 

easy to modify (5.19) with the imperfections of bars AC and BC. On the other hand, all 

of the other perturbations ruin the symmetry of linkage OAADBOB and thus the 

expression becomes complicated. Therefore here only the Taylor series expansion is 

shown with imperfections 1ε , 2ε  and 3ε  for bars OAA, AC and BC, respectively. 

 ( ) ( ) K+−+





−+








−+≈ 321

3
1

2
113

4
131 4

1
4
2~

4
2; εεφεφεφφφφF  (5.21) 
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Due to these imperfections the linear and the constant terms appear in (5.21) in addition 

to those in (5.20). Let us introduce new parameters 1t , 2t  and 3t : 

 133
3
12321 4

2~,
4
1, εφεεε −=−=−= ttt  (5.22) 

so that the equilibrium form of the of the swallowtail catastrophe is obtained. 

Consider now the alternative compatibility condition in square form 

 ( ) ( ) 02sin2cos2cos22
2
1 2

3

2

31 =



 −+−−= φφφF . (5.23) 

Again, the imperfections make (5.23) complicated hence only the Taylor series is given 

here: 

 ( ) ( ) K+−+







−+






 −+≈ 321

3
1

2
113

4
131 22

4
2

2
1~2

2
1; εεφεφεφφφφF  (5.24) 

Note that the same terms are obtained with slightly different coefficients. The new 

parameters are introduced in a similar way. 

In Chapter 3 and 4 we have seen the differences between the symmetric bifurcations 

of equilibrium and compatibility. It has also been shown in Section 2.2 that the two 

structures with the two types of symmetric equilibrium bifurcations correspond to the 

cusp catastrophe. Our analysis demonstrates that the six-bar linkage is equivalent to a 

higher-order catastrophe, the swallowtail. 

The higher-order term in the compatibility condition is the result of the symmetry of 

the perfect configuration at the bifurcation point, see Figure 5.3(a). Nodes A and B have 

the same y coordinate and the distance contains a second-order term of 1φ . Taking 3φ  

constant, the compatibility condition for BC is obtained from the right-angled triangle 

ABC hence the term 4
1φ , see Figure 5.3(b). 

The approach based on catastrophe theory presented here helps to analyse and 

understand the singular behaviour experienced at the straight compatibility path 01 =φ  

shown in Figure 3.7(a). The singularity demonstrated by the Jacobian matrix, see 
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Section 4.1.1, suggests that a catastrophe of a certain type may occur along that path. 
Let us carry out the analysis at a point: ( 01 =φ , 0,33 φφ = ). 23 π±≠φ  so that the point 

in consideration is not one of the bifurcation points. The Taylor series obtained will be 

the same as (5.20) except that 2~
33 π−= φφ , which is now a non-zero constant. Hence 

the characteristic term of the series is a second-order one, which indicates the fold 

catastrophe. In other words, the points along the straight compatibility path are not 

regular points as defined in Section 3.2 but correspond to a catastrophe type which is 

lower-order than that at the bifurcation points. 

To understand how this occurs let us examine the mathematics of the swallowtail in 

detail (Gáspár, 1999). The canonical form can be written as 

 ( ) 11
2
12

3
13

5
13211 ,,, ututututttuf +++=  (5.25) 

where the variable is denoted by u1 and the parameters by t1, t2 and t3. The equilibrium 

form is derived from (5.25): 

 0235 112
2
13

4
1

1

=+++= tututu
du
df . (5.26) 

Figure 5.3: (a) Bifurcation point 2 '  of the six-bar mechanism. (b) Configuration near the bifurcation
point at unchanged φ 3.
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It requires a four-dimensional space to plot, and therefore it cannot be visualized. 

Critical points are obtained where the second derivative becomes zero: 

 02620 213
3
12

1

2

=++= tutu
du

fd . (5.27) 

Eliminating the variable from the equation system of (5.26) and (5.27), the 

bifurcation set is obtained in the three-dimensional space of the parameters. It is a set of 

points ( )321 ,, ttt  where singularity of a certain type occurs. 

The bifurcation set is a manifold in the parameter space that divides the space into 

regions within which the properties of the stationary positions are the same. For 

example, the bifurcation set of the one-parameter catastrophe type, the fold, is a single 

point in the one-dimensional space. 

The swallowtail catastrophe requires three parameters hence the bifurcation set 

consists of surfaces in the three-dimensional space ( )321 ,, ttt . The schematic graph of 

the bifurcation set is plotted in Figure 5.4. The surfaces correspond to the fold (A2) 

while their intersections produce more complicated singularities. On the intersection 

line in the symmetry plane ( )31 , tt  two fold catastrophes occur, and the cusp (A3) can be 

found on the other lines. The point ( ) ( )0,0,0,, 321 =ttt  is the swallowtail catastrophe 

point (A4) itself. 

Let us now compare the Taylor series in (5.20) with the equilibrium form in (5.26). 

The variable is 1φ  and parameter t3 is represented by 3
~φ . In (5.20) all other parameters 

(imperfections, etc.) are zero, i.e. no linear term of 1φ  and constant term are present. 

Hence this system corresponds to 021 == tt  in the parameter space and the straight 

compatibility path 01 =φ  coincides with axis t3. Note that axis t3 is part of the 

bifurcation set: its points represent the fold catastrophe (except the origin, which is the 

swallowtail). Consequently, the reason why the straight compatibility path is singular is 

that the entire path has a special location in the parameter space, as it is part of the 

bifurcation set. 
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Let us now pay attention to another special position on the bifurcation set. 

Figure 3.7(a) also shows the compatibility paths of the imperfect mechanism if the 

length of bar AC is perturbed by a small ε . Note that if 0>ε , two curves are obtained 

in symmetric positions. Each has a limit point in the vicinity of the original bifurcation 

point. The extrema occur simultaneously and they are functions of the imperfection. The 

corresponding values of the imperfection and the extrema define the line in the 

parameter space where two fold catastrophes are present, see Figure 5.4. 

A more complicated relationship among the parameters is required to obtain the line 

of the cusp catastrophe (A3) shown in Figure 5.4. In stability theory the cusp catastrophe 

is usually demonstrated by the symmetric bifurcation of the Euler problem, though it 

represents only a section of the bifurcation set. The schematic plot of the bifurcation set 

of the cusp catastrophe is shown in Figure 5.5(a) (Gáspár, 1999). 

The two lines correspond to the fold catastrophe points and divide the parameter 

plane into two regions: there is only one equilibrium position in the upper one while 

there are three of them between the branches of the cusp. There are various possibilities 

to pass from one region to the other, two relevant cases are discussed here. 

If the cusp point is passed by tangentially to the direction of the peak as shown in 

Figure 5.5(b), the number of equilibrium positions suddenly changes producing a 

Figure 5.4: The bifurcation set of the swallowtail catastrophe in the parameter space (t1, t2, t3).
Regular stationary points are not labelled in the graph.
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symmetric bifurcation in the equilibrium path in the coordinate system of the variable 

(x) and the load parameter (p), see Figure 5.5(c). However, if the cusp point is passed by 

in any other direction as shown in Figure 5.5(d), then the corresponding equilibrium 

path has no bifurcation though the curve is locally third-order at the critical point, see 

Figure 5.5(e). Consequently, the symmetric bifurcation can be visualised only in a 

particular direction in the parameter space. 

The difficulty the choice of the parameter can cause is apparent in the analysis of the 

bifurcation set of the swallowtail catastrophe. The cusp points form two lines in the 

bifurcation set as shown in Figure 5.4. If a cross section is taken through a cusp point, 

the cusp is tilted, i.e. the peak is not symmetric to any of the parameter axes. Hence it 

requires a special combination of the parameters to produce the symmetric bifurcation. 

At the cusp points, in addition to Equations (5.26) and (5.27), the following equation 

also holds: 

Figure 5.5: (a) The bifurcation set of the cusp catastrophe in the parameter space (t1, t2). The origin
corresponds to the cusp catastrophe point, the lines to positions where the fold catastrophe occurs

(regular stationary points are not labelled in the graph). (b) A direction in the parameter plane,
tangentially to the peak, and (c) the corresponding equilibrium paths. (d) Any other direction, and

(e) the corresponding equilibrium paths.
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 0660 3
2
13

1

3

=+= tu
du

fd . (5.28) 

From equations (5.26), (5.27) and (5.28), the critical point can be found in terms of the 

parameters: 

 2
0,13

3
0,12

4
0,11 10,20,15 ututut −==−= . (5.29) 

Let us now find the Taylor series of the equilibrium equation (5.26) around the 
critical point 0,1u . Introducing the substitution vuu += 0,11  gives 

 

( ) ( ) ( )

( ) 0235

2620330205

10,12
2

0,13
4

0,1

20,13
3

0,1
2

3
2

0,1
3

0,1
4

=++++

+++++++=

tututu

vtutuvtuvuv
dv
df

K

K

. (5.30) 

To obtain the equilibrium form of the cusp catastrophe, the second-order term needs to 
be eliminated. Substituting 0,1u  in terms of parameter t3 in (5.29) yields the coefficients 

in the polynomial (5.30) as follows: 

 
( )

( ) ( ) 12
2/1

3
2/12

30
2/3

3
2/3

21

2
2/1

3
2/1

34

10241,1040

0,1020,5

ttttstts

stss

+−⋅+⋅−=−⋅−=

=−⋅==

−−

−

 (5.31) 

If the third coefficient 3s  is constant, all the higher terms (namely the fourth) can be 

omitted. Now equation (5.30) will produce a symmetric bifurcation if the first 

coefficient is regarded a control parameter. The constant term, which is independent of 

the variable v, must be zero. Thus in the infinitesimal vicinity of the critical point, a 

symmetric bifurcation is obtained in terms of the variable v and the newly defined 

control parameter. 

Now comparing the compatibility equation (5.24) of the six-bar mechanism with the 

equilibrium equation (5.26) the following equalities hold: 

 133 4
2 εφ −=t , (5.32) 
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 3
12 4

1 ε−=t , (5.33) 

 321 εε −=t . (5.34) 

Equation (5.31) shows that 3s  becomes a constant if t3 is a constant, which leads to a 

particular relationship between 3φ  and 1ε . Furthermore, 1s  will vary with t2 only. Let us 

define 1s  as a control parameter. Finally, t1 is to be defined so that 0s  in (5.31) remains 

zero, and thus the equilibrium form of the cusp is obtained. 

5.2.5 The A-shaped linkage 

We have shown in Section 5.2.4 that the fourth-order term in the Taylor series in (5.20) 

is the result of the geometry of the triangle formed by the moving nodes A, B and C, see 

Figure 5.3(b). This leads us to believe that, if the relative motion between nodes A and B 

in the coordinate directions is suitably chosen, the compatibility condition can be 

modified accordingly. We can therefore define a motion so that the order of the pure 

term in the Taylor series is different from the fourth. For example, we may obtain a 

third-order term by this approach, resulting in the equilibrium form of the cusp 

catastrophe. 

Consider a part of a mechanism shown in Figure 5.6(a). For simplicity both bar AC 

and BC have unit length. The compatibility condition can be written as 

 ( ) ( ) ( ) 01cossin; 22 =−−∆+−∆= sysxsF φ  (5.35) 

where x∆  and y∆  are the coordinates of B and s is the kinematic state variable 

representing the angle between bar AC and the vertical axis. In order to obtain an 

approximation of ( )sF ;φ  in the form of 

 ( ) K+−−≈ 23; φφφ sccsF xy , (5.36) 

obviously the following must hold. 
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 ( ) ( ) KK +=∆+=∆ 32 , φφφφ yx cycx . (5.37) 

Is it possible? 

Consider now a linkage shown in Figure 5.6(b). All bars have unit length and 

arranged on an equilateral triangle. The base of the mechanism is a simple four-bar 

linkage DEFG to which a coupler point is attached rigidly. 

The important feature of the linkage is that node E is aligned with H and D as well as 

F is aligned with H and G. It implies that the motion of the coupler point H in terms of 

the variable φ  has no linear term. In fact, it can be shown that the motion is 

approximately: 

 KK ++=+++= 43432 2
3

32,
6

311
3
4

3
32 φφφφφ HH yx  (5.38) 

This is precisely what we want. 

Now join the linkage shown in Figure 5.6(b) with the parts in Figure 5.6(a) by 

attaching B with H by a hinge. A linkage is obtained as shown in Figure 5.6(c). Due to 

the peculiar geometry we refer to this mechanism as the A-shaped linkage in the 

following. 

When (5.38) is substituted into (5.36) for x∆  and y∆ , the compatibility condition for 

bar BC is obtained. The higher-order terms in (5.38) do not affect the characteristics of 

the Taylor series: 

Figure 5.6: Mechanism for the generation of third-order variation of the compatibility condition.
(a) Relative motion between nodes A and B. (b) A-shaped linkage. (c) The whole bar-assembly.
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 ( ) K+−−≈ 23 3
3
23

3
2; φφφ ssF  (5.39) 

The second term is second-order in φ , therefore a linear transformation is applied: 

 s
3
13

3
2 31

−





−=

−

φφ . (5.40) 

The Taylor-series has now the form: 

 ( ) K+−





−−≈ 32

32
3 3

81
43

3
2

3
1; sssF φφφ  (5.41) 

In a similar way to the previous examples, imperfections are also considered. It is 

easy to formulate the perturbations of bars AC and BC while those of the other bars 

make the motion of node H even more complicated. Let us introduce three parameters, 

1ε , 2ε  and 3ε  for bars DE, AC and BC, respectively. The compatibility condition now 

can be expanded into its Taylor series as: 

 ( ) ( ) K+−+−+





+






 −−+−≈ 3211

2
1

3 3
3
1

6
53

3
23

3
2; εεεφεφεφφ ssF  (5.42) 

Again a linear transformation is needed to eliminate the second-order term: 

 1

31

3
36
5
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The new Taylor series now is: 
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Introduce new parameters as the terms in brackets in (8.44): 
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





−+






−=−+−= stt . (5.45) 

The compatibility condition is now equivalent to the second equilibrium form in 

Table 5.1 and hence to the cusp catastrophe. 
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The alternative form of the compatibility condition can also be used: 

 ( ) ( ) ( )[ ] 01cossin
2
1; 22 =−−∆+−∆= sysxsF φ  (5.46) 

A detailed analysis carried out in the same way gives the identical equilibrium form. 

5.3 Higher-order catastrophes 

In the previous section mechanisms have been shown presenting the first three cuspoid catastrophe types, 

the fold, the cusp and the swallowtail. In this section we propose a method in order to create higher 

catastrophe types. 

A way of creating higher-order catastrophes is to exploit the higher-order movements 

of the points of the mechanism. For example, the A-shaped mechanism has been created 

from a two-bar chain so that the appropriate node of the linkage follows a pre-described 

trajectory by means of a carefully designed linkage, see Figure 5.6. The modified 

compatibility condition produces the expected catastrophe type. 

The same technique can be used to create higher-order catastrophes. 

For example, if nodes A and B in Figure 5.6(a) are made to move simultaneously, 

having the same y coordinate, the elongation of bar BC has a special relationship with 

x∆ . Consider the triangle ABC in Figure 5.7 where A and B have the same y coordinate. 

If x∆  changes with the nth power of φ , the elongation of BC can be given by the (2n)th 

Figure 5.7: Compatibility of bar BC due to the relative movement of A and B.
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 x

 y

 C

 B

 ∆x(φ)



 118 

power, as a consequence of Pythagoras’ theorem. If x∆  has third-order term of the 

variable φ , the distance BC, for which the compatibility condition is set up, has sixth-

order term. It is related to the cuspoid catastrophe 6A  (the wigwam). The basic elements 

to produce such a movement in A and B are given by two identical A-shaped 

mechanisms, see Figure 5.8(a). This is a compound linkage with two identical A-shaped 

mechanisms DEFGH and D’E’F’G’H’ with their symmetry axis aligned with 

coordinate axis y. Let them overlap each other so that the fixed nodes coalesce: D = D’ 

and G = G’. At the starting position all other nodes coalesce as well. Two identical 

links, HC and H’C, are attached in a similar way to the previous cases. In order to 

synchronize the motion of the two linkages, a reverser mechanism, bars EJ and JF’ are 

also added. The small offset between the two A-shaped linkages in the schematic 

diagram is only for better visualization. 

The A-shaped mechanisms produce third-order motions of nodes H and H’ in x 

direction in terms of the variables which control the motion. The reverser mechanism 

ensures that the two mechanism are mirror images to the symmetry axis, hence one 

variable (φ ) is sufficient for the entire linkage and the two coupler points, H and H’, 

have the same y coordinate, see Figure 5.8(b). Consequently, the compatibility 

condition is a sixth-order one. 

Figure 5.8: Compound A-shaped mechanism. (a) Configuration at the bifurcation point. (b) Actuation
of the mechanism.
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It is clear from this example that complicated linkages are needed for higher-order 

catastrophes. The proposed approach can easily produce even-order terms from lower-

order ones, while odd-orders, e.g. the fifth or the seventh are likely to be more difficult 

to obtain. 

5.4 Degenerate mechanism 

The perturbation terms in the Taylor series of a given catastrophe constitute the 

unfolding of the catastrophe (see Thom’s theorem in Section 2.3.1). This phenomenon 

enables the creation of all lower-order catastrophe types in the neighbourhood of a 

higher-order one. In Section 5.2.4 we have shown an example where lower catastrophe 

types occur in the vicinity of the point. As we have seen, the swallowtail catastrophe 

can be perturbed by suitably chosen imperfections in order to obtain the fold or the cusp 

types. 

The idea is utilized through the square-shaped four-bar linkage presented in 

Section 3.1.4, see Figure 3.8(a). In this degenerate case, all terms of the variable in the 

Taylor series vanish simultaneously. Hence the compatibility condition at the 

bifurcation point is regarded infinitely degenerate, and can be taken as an ∞A  cuspoid 

catastrophe. The idea of unfolding suggests that lower-order variations and hence lower-

order catastrophe types can be obtained. For the point is infinitely degenerate, it follows 

that cuspoid catastrophes of any order can be produced by a suitable perturbation of the 

system. 

In fact, this phenomenon also exists in stability theory. Gáspár (1984, 1999) 

presented an infinitely degenerate elastic structure, which has been reviewed in 

Section 2.2.4, see Figure 2.5. Gáspár has considered the higher-order perturbation to the 

force in the horizontal spring in terms of the elongation, i.e. the spring behaves 

nonlinearly. He showed that the total potential energy function has a ( )th1+j  term in 
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the Taylor series expansion if only the jth imperfection factor is considered. Hence a 

cuspoid catastrophe Aj occurs. 

Imperfections with a similar effect can be designed for the degenerate four-bar 

linkage. If the compatibility condition is kth order in the variable α  at the bifurcation 

point, it is possible to perturb the polynomial mathematically to get k solutions for α  in 

the vicinity of the singularity for a given β . The physical representation of a 

perturbation is an imperfect system which can have k feasible positions for α . Hence 

the bifurcation point is regarded as a cuspoid catastrophe 1+kA . In short, the aim is to 

perturb the degenerate bifurcation point by an imperfection so that it becomes kth order. 

As the point is infinitely degenerate, a suitable imperfection may, in principle, produce 

any given k. 

Small constant imperfections have been introduced in Section 5.2. The Taylor series 

contains the second-order term of the variable. This imperfect system can have only two 

compatible positions for a given parameter near the bifurcation point, hence only the 

fold catastrophe can occur. In order to get higher-order terms, the system needs to be 

perturbed in a more complicated way. To understand the necessity of this, the 

mathematics of transversality is to be briefly introduced (Poston and Stewart, 1978). 

Consider the n-dimensional space  with two affine subspaces X and Y of 

dimensions s and t, respectively. They meet transversely if either their intersection 

YX I  is empty or its dimension is nts −+  (if this number is non-negative). This 

definition leads to the definition of the transversality of manifolds. Two submanifolds of 

 meet transversely at a given point provided either the point is not a common point, or 

their tangent affine hyperplanes (affine subspaces of ) meet transversely. A simple 

example is given in Figure 5.10. The touching circles denoted by heavy lines in 

Figure 5.10(a) meet non-transversely because their tangents coincide. On the other 

hand, the intersecting circles in Figure 5.10(b) meet transversely as their tangents 

intersect at an angle. 

This can be applied to the degenerate four-bar linkage as follows. The parameter β  

defines the position of node B on the plane. To have a compatible configuration node A 
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has to be both on the circle with radius a centred at OA (set 1S ) and on the circle with 

radius a centred at B (set 2S ). Where the two sets meet transversely, a non-singular 

configuration is obtained. If they meet non-transversely, singularity occurs. 

Figure 5.9 shows three typical cases. In the first case where 0=β , i.e. OBB remains 

horizontal, there is only one possible position for A. This is a non-transverse intersection 

and the compatibility path has a bifurcation point, see Figure 5.9(a). In case of 0≠β  

the sets meet transversely and two compatible configurations are obtained, see 

Figure 5.9(b). Finally, at the degenerate bifurcation point the two sets are identical, 

which is a non-transverse intersection again, see Figure 5.9(c). If constant imperfections 

are applied to the bar lengths, the perturbed system is obtained as shown in Figure 5.10, 

in which only the intersections of the sets are shown; continuous lines show the original 

circles, and dashed, dotted and dashdot lines correspond to various imperfections. 

Figure 5.9: Transversality of sets S1 and S2. (a) Non-transverse intersection at one point. (b) Transverse
intersections at two points. (c) Non-transverse intersection at all points.
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Figure 5.10: Perturbation of intersections of two sets. (a) Non-transverse intersection at one point.
(b) Transversal intersections at two points. (c) Non-transverse intersections at all points.
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In the first case the non-transverse intersection disappears if one of the circles is 

perturbed, see Figure 5.10(a). Either two transverse intersections are obtained or none, 

depending on the imperfection. In the second case the number and type of intersections 

remain unchanged, see Figure 5.10(b). In the last case, shown in Figure 5.10(c), several 

possibilities arise: one non-transverse intersection (dotted line), two transverse 

intersections (dashed line) or none (dashdot line). 

Note that in either case the maximum number of intersections is two, i.e. only the 

fold catastrophe is possible. Compare this with the earlier results in this chapter 

showing second-order terms of the variable in the imperfect systems. In order to 

produce higher-order catastrophe types, a more sophisticated imperfection system 

should be applied, which will be discussed next. In fact, the degenerate case has a 

potential for any cuspoid catastrophe. 

5.4.1 Imperfections of the nodal distances 

The first approach to obtain higher-order catastrophes is based on imperfections of the 

bar lengths as before, but now higher-order variations are also considered. Consider 

again the square-shaped four-bar linkage shown in Figure 3.8(a). When an imperfection 

4ε  exists for bar OAA, the compatibility condition, written for bar AB, becomes 

 ( ) ( )( ) ( )( ) 0sinsincoscos; 2
4

2
4 =−+−++−+= aaaaaaF αεβαεββα . (5.47) 

Assume 

 ∑
=

=
r

i

i
ic

1
4 αε  (5.48) 

where ic  ( )K,2,1=i  denote constants. Substitute it into (5.47). The Taylor series 

expansion is calculated at the critical value of the parameter: π=β . At this value 

1cos −=β  and 0sin =β  hold, thus it is easy to show that the compatibility can be 

reduced to 
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 ( ) ( )( ) ( )( ) ( ) 4
2

4
2

4
2

4 sincos; εεαεαεβα =−+=−+++= aaaaaF  (5.49) 

which is identical to the form (5.48). Consequently, if only the jth order variation is 
present in (5.48), the bifurcation point is equivalent to the jA  catastrophe. The 

geometrical explanation to this is that the imperfection given in (5.48) distorts the circle 

defined by positions of A, see Figure 5.9(c). Sets 1S  and 2S  now have only one non-

transverse intersection at the bifurcation point. 

The imperfection given in (5.48) does exist in reality. A typical example can be 

found in linkages containing ball or roller bearings. 

The main structure of a bearing consists of an inner and an outer ring with a series of 

rolling elements (balls or rollers) in between (Eschmann, et al., 1985). A schematic 

diagram is shown in Figure 5.11. 

The axis of the inner ring raceway defines the axis of rotation of the inner ring. The 

axis of the inner ring bore is the axis of the spindle attached to the inner ring. In the 

square-shaped linkage the outer and inner rings are attached to bar OAOB and OAA, 

respectively, and the nominal length of the bars is measured from the appropriate axis. 

If the geometry is perfect, the two axes coincide and a mechanism with perfect 

configuration (exact bar lengths) is obtained. 

Figure 5.11: Schematic diagram of a ball or roller bearing. In case of perfect geometry the elements
are circular and the axis of inner ring raceway coincides with the axis of inner ring bore.

outer ring
outer ring raceway
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However, due to various manufacturing errors or extensive use, imperfections set in. 

One type of imperfection is because the inner ring bore is eccentric to the inner ring 

raceway, see Figure 5.12(a). Bar OAA still rotates around the axis of the inner ring 

raceway though the nominal length is measured from the axis of the inner ring bore. 

Hence the physical length of bar OAA is modified by the eccentricity. 

The second type of imperfection is due to an irregular wave-shaped raceway, see 

Figure 5.12(b), which may be caused by wear. As the inner ring is rotating inside the 

outer ring, the axis of the bore is shifting because the radius of the raceway is not a 

constant but perturbed by an irregular wave with small amplitude. The shape of the 

wave defines the shift of the axis. The perfectly round shape (constant radius) is 

infinitely degenerate hence a suitable perturbation results in a variation of any order. 

The end node of bar OAA is centred at the axis of the bore therefore the nominal length 

of the bar is modified by the shift. 

5.4.2 Imperfections in three-dimensional space 

The second approach to get higher-order catastrophes is to modify the configuration of 

the square-shaped mechanism but to keep the bar length unchanged. This is realized in 

three-dimensional space because such singularities cannot be obtained in the plane as 

we have seen above. 

Figure 5.12: Imperfections of the inner ring of a ball or roller bearing. (a) Round raceway eccentric to
round bore. (b) Irregular wave-shaped raceway concentric with round bore.
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The objective is to reproduce the identical circles shown in Figure 5.9(c) in three-

dimensional space. Thus non-transverse intersections are obtained at all points again. 

Unlike the planar configuration, the linkage can be perturbed in the space around the 

bifurcation point so that the distorted circles meet non-transversely to any given degree. 

Let the linkage fit to the coordinate plane ( )yx,  in the three-dimensional space 

( )zyx ,,  where the nodes are given as ( )0,0,0AO , ( )0,0,aOB , ( )0,sin,cos αα aaA  

and ( )0,sin,cos ββ aaaB + , see Figure 5.13(a). Let us modify the configuration by 

making the moving nodes A and B supported by rollers. They move on predefined 

surfaces, as shown in Figure 5.13(b). 

These surfaces are small perturbations of the original plane ( )yx, , and are given by 

the elevation angles δ  and ε , in terms of α  and β , respectively: 

 ( ) ( )βεεαδδ == , . (5.50) 

Nodes A and B now track the three-dimensional curves in the coordinate system 

( )zyx ,, : 

 ( ) ( )εβεβεδαδαδ sin,sincos,coscos,sin,sincos,coscos aaaaBaaaA + . (5.51) 

The compatibility condition is again written for bar AB as 

 ( ) 0; 222 =−++= aZYXF βα . (5.52) 

where X, Y and Z are the projections of the distance AB to the coordinate axes: 

Figure 5.13: Square-shaped four-bar linkage. (a) Planar configuration. (b) Spatial configuration.
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 ( ) ( ) ααδββε coscoscoscos aaaX −+= ,  

 ( ) ( ) ααδββε sincossincos aaY −= , (5.53) 

 ( ) ( )αδβε sinsin aaZ −= .  

If the surfaces are suitably chosen in the neighbourhood of the bifurcation point 

( )π== βα ,0 , the objective given above is achieved. First, node B has to be moved out 

of the plane ( )yx,  otherwise it would coalesce with OA at the bifurcation point and 

hence arbitrary α  would satisfy the compatibility condition. It is sufficient to suppose 

that B is lifted off the plane by a small constant 0ε : 

 ( ) 0εβε = . (5.54) 

Now let function ( )αδδ =  be approximated by the Taylor series: 

 ( ) K+++== 3
3

2
21 αδαδαδαδδ  (5.55) 

where ( )K,2,1=iiδ  are the coefficients. Substituting (5.55) into the compatibility 

condition (5.52) the Taylor series are obtained in the form: 

 
( ) ( ) ( )

termsmixedandorderhigher

,,,,,, 3
32103

2
2102101

−+

+++=

K

Kαδδδεαδδεαδε fffF
 (5.56) 

where kf  denotes the coefficient of the kth order term of α . We have found that each 

function kf  depends on the coefficients ( )kii ,,2,1 K=δ  because further ( )kii >δ  

factors have no effect on the kth power of α . 

In order to obtain the cuspoid catastrophe kA , all terms up to the ( )th1−k  in (5.56) 

have to be eliminated, i.e. their coefficients be made equal to zero. The first coefficient 

can be eliminated by a suitable definition of 1δ  in terms of 0ε . When substituted to the 

next one, this can be repeated for 2δ , etc. 
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5.5 Discussion 

In this chapter we have introduced a classification method for mechanisms with the aid 

of catastrophe theory. The mathematical formulation of the system may pose a few 

questions which we address here. 

5.5.1 Control parameter 

In Section 5.2.1 we have proposed a classification method for mechanisms based on the 

analogy between equilibrium and compatibility. It requires that one of the two 

kinematic state variables be designated as a variable while the other as control 

parameter in order to obtain the forms in Table 5.1. As there is no a priori distinction 

between the two state variables, the choice seems arbitrary. However, the assignment of 

the control parameter needs to be done so that the behaviour of the mechanism at the 

singular point is best revealed. On practical grounds, the state variable having the higher 

term in the Taylor series is to be regarded as the variable because it exhibits a more 

sophisticated behaviour. 

However, the mobilization of a linkage may define the choice of the control 

parameter. If a machine is driven by an actuator attached to one of the elements, it is a 

sensible supposition to associate a control parameter with the position of that particular 

element. 

5.5.2 Single compatibility condition 

Two types of compatibility conditions have been introduced in Section 3.3. The square 

form (3.9) incorporates the square of both the distance between two nodes and the 

length of the corresponding bar, while the square root form (3.10) expresses the equality 

of the distance and the length. The latter one bears a direct geometrical meaning. 
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Both forms have been examined in Section 5.2 and found to yield the same results 

concerning the significant terms in the Taylor series of the compatibility function. 

5.5.3 Combination of compatibility conditions 

This behaviour suggests that the mathematical behaviour of the system may be 

independent from the formulation of the compatibility. 

Most of the mechanisms shown in Section 5.2 are described by a reasonably simple 

single compatibility conditions in the form (3.10) due to the symmetry or the simplicity 

of the bar assembly. The A-shaped mechanism is an exception because the position of 

node H in terms of φ  is quite complicated. When geometric imperfections are 

considered, the single compatibility condition becomes more complex, mainly because 

the imperfections ruin the symmetry that many of the mechanisms have. 

Hence the need arises to find a simpler formulation with an equivalent effect. A 

formulation may be based on a different set of state variables and compatibility 

conditions. It has been demonstrated in Section 4.1 that the problem can be described by 

the Cartesian coordinates of the nodes and a sufficient number of compatibility 

conditions, which are significantly simpler. In order to carry out the classification 

proposed in Section 5.2.1, a single function has to be created incorporating the 

individual conditions. 

Such a combination is given by a simplified form of the energy function (3.27) 

introduced in Section 3.4.3. It is defined as the sum of the squares of the individual 

conditions equals zero: 

 02 ==∑
i

iFU  (5.57) 

This condition is satisfied if and only if all the individual ones are satisfied, therefore it 

expresses the compatibility of the system and may be used for the classification of the 

singular positions. 
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It has been shown in Section 4.1 that different state variables can be chosen in some 

cases, from the most compact set with two state variables and one compatibility 

condition to the most general approach based on all Cartesian coordinates and 

conditions for all bars. 

If the single compatibility condition is applied, the function U in (5.57) becomes the 

square of the condition. The problem is essentially the same as before with an important 

difference that the order of the characteristic term in the Taylor series is now exactly the 

double of that of the compatibility condition. 

In the case of any other formulation of compatibility, (5.57) is a sum of square terms 

and the behaviour is to be analysed in detail. This formulation is referred to as the 

combined formulation in the following and will be compared to the single condition 

formulation. As the single compatibility condition describes the motion uniquely in 

terms of two kinematic variables, it forms a basis for the analysis conducted earlier in 

this chapter. Assuming the proposed function (5.57) to be useful, the combined 

formulation is expected to provide terms of the same order as the single condition 

formulation. The individual conditions can be either in square form (3.7) or square root 

form (3.8) in terms of the Cartesian coordinates. In the case of the square form, function 

(5.57) becomes a polynomial having terms up to the fourth-order in its Taylor series, 

which cannot provide sufficient information on the behaviour in certain cases. Hence 

only the square root form will be applied in the following. 

Consider again the kite-shaped four-bar linkage. The single compatibility condition 

(5.1) has a second-order term of α , as shown in Section 5.2.2. Consequently, function 

U, created as the square of (5.1), has the fourth power of the variable. If the Cartesian 

coordinates are used, the compatibility is written as 

 02
1

2
11 =−+= ayxF , 

 ( ) ( ) 02
12

2
122 =−−+−= byyxxF , (5.58) 

 ( ) 02
2

2
23 =−+−= byaxF . 
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The function (5.57) becomes 

 2
3

2
2

2
1 FFFU ++= . (5.59) 

It is easy to show that the pure terms with the lowest-order are: 2
1x , 4

1y , 2
2x  and 4

2y . 

Either (5.59) or the square of (5.1) is used, the characteristic term is fourth-order. 

The behaviour of the parallelogram-shaped four-bar linkage is similar. Again, if the 

single compatibility condition is used, function U has fourth-order terms in α . If the 

Cartesian coordinates are used, in a similar way to the previous case, one can find that U 

is second-order in the x coordinates and fourth-order in the y coordinates. 

In case of the degenerate square-shaped four-bar linkage, the single condition (5.13) 

has no pure terms, hence function U has none either. However, the most general 

formulation results in second and fourth-order terms, in a similar way to the previous 

two cases. Now there is clearly a discrepancy between the two formulations. 

The six-bar linkage provides more choices of conditions. The single condition 

formulation obviously results in the eighth-order term. If the four angles are used, as 

introduced in Section 3.1.2, only second-order terms are obtained. Finally, if the most 

general formulation is applied, second and fourth-order terms are produced. 

The discussion of the A-shaped linkage goes in a way similar to that of the six-bar 

mechanism. The single condition approach results in a sixth-order term of the variable. 

Again two other formulations can be considered. It can be shown that the results are 

similar to those of the six-bar mechanism. 

The examples demonstrate that the Taylor series of the function defined in (5.57) 

widely varies with the choice of the state variables and the compatibility conditions. We 

conclude that the simplification of the formulation of the problem is done on the 

expense of the loss of important behaviour. The combination of simple conditions 

cannot reflect the higher-order variation of the state variables that is found with the 

single compatibility condition. Consequently, the single compatibility condition has to 

be used in preference to the combined formulation even if it makes the mathematical 

formulation more complex. 
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5.5.4 State variables 

Another problem to be addressed is related to the state variables that describe the 

motion of a linkage. It has been shown in Section 5.1 that different sets of state 

variables result in different compatibility paths. The state variables have to be chosen to 

define the position of the entire linkage uniquely. The general formulation based on the 

Cartesian coordinates is a unique description of the system while the single condition 

with two state variables may offer more choices. It becomes clear in the case of the 

more complicated examples, e.g. the A-shaped linkage. It is essentially a four-bar 

linkage with a rigid triangle attached to the coupler bar. It is easy to see that either the 

rotation of the sidebars or of the rigid body can define the shape uniquely. The analysis 

in Section 5.2.5 uses one of them: the angle of bar DE. 

The question arises whether or not the three choices are equivalent concerning the 

classification of the mechanism. In the base configuration the four-bar linkage is not in 

a singular form hence the angles defining the positions of the bars are linearly related 

during the motion of the bar-assembly. Therefore either of them provides the same 

characteristic term in the Taylor series. 

We conclude then that the third-order term in the compatibility condition is not the 

result of a special choice of the variable but the only possible outcome provided the 

variable is chosen to describe the motion uniquely. A similar reasoning is applied to the 

compound A-shaped linkage where the reverser linkage provides a non-singular 

transmission of motion between the two parts of the linkage. In this case even the 

position of the reverser linkage can be used as a variable with the same effect as the 

other choices. 

However, if a linkage is in a singular form, the unique description of the system is 

more complicated, as demonstrated by the two-bar linkage shown in Figure 5.14(a). If 

the rotation of bar AB is given by the angle φ , it is easy to show that the displacement 

of node C is approximately proportional to 2φ . A compound of two of these 

mechanisms is shown in Figure 5.14(b). Now the rotation of bar DE is approximately 
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proportional to 21φ . If φ  is associated with bar DE instead, the rotation of bar AB is 

second-order in φ  and hence the displacement of C is fourth-order. 

The cause of this is that two choices of the variable are not equivalent in representing 

the motion of the mechanism. If φ  is given as in Figure 5.14(b), AB and the rest of the 

mechanism are determined uniquely. On the other hand, if the position of AB is defined 

by angle φ , DE will have two possible positions. Clearly more state variables and 

compatibility conditions are needed to overcome the problem. 

 

Figure 5.14: (a) Three-hinged two-bar mechanism. (b) Combination of two two-bar mechanisms.
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6.1 New results 

In this dissertation we have explored the relationship between the equilibrium of elastic 

structures and compatibility of mechanisms. The theory of elastic stability has a long 

history and a substantial amount of literature. Various instability phenomena have been 

studied in depth in the past. On the other hand, singularities of compatibility paths of 

mechanisms have attracted relatively little attention. We try to bridge this gap by 

establishing an analogy between the two subjects so that mathematical tools, used in 

structural stability, can be used in the analysis of compatibility of mechanisms. 

In our study we have considered bar-linkages consisting of straight rigid bars and 

frictionless pin joints. We have restricted our examination to planar linkages with only 

one degree-of-freedom. We have also assumed quasi-static behaviour ignoring all time-

related effects, inertial forces, etc. Within this framework, various aspects of the 

behaviour of the two subjects have been compared and studied. Our achievements are 

summarized as follows. 

(a) The compatibility conditions of a mechanism have been mathematically formulated 

as implicit nonlinear functions of the state variables and parameters, in a similar 

way to equilibrium equations in structural stability. One of the state variables is 

designated a kinematic variable while the other a control parameter as analogues of 

the generalized coordinate and the load parameter, respectively. Further parameters 

are considered by introducing imperfections to the system resulting in a 

compatibility condition and a plot of the compatibility paths. The compatibility 

paths can be analysed the same way as equilibrium paths of a structure. 

(b) New bifurcation modes have been found in addition to the asymmetric one, reported 

in the past by other researchers. A six-bar linkage is shown which produces two 

symmetric bifurcations, one referring to an increasing control parameter while the 

other to a decreasing one. A complete analogy with three fundamental modes of 

equilibrium bifurcation has been established. A special four-bar linkage is also 
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studied which has a degenerate symmetric bifurcation point, analogous to the 

degenerate equilibrium bifurcation. 

(c) Various formulations are studied with the aim to create the kinematic counterpart of 

the potential energy of elastic structures. We have found that a formulation 

involving external nodal forces is not suitable to function as its equilibrium 

analogue. A formulation based on the strain energy of the bar-assembly yields the 

compatibility conditions by a differentiation with respect to the bar forces. A third 

function is created from which the compatibility condition is derived by 

differentiation with respect to its variable. It is a formal analogue of the equilibrium 

case though its complexity prevents any practical analysis. It also lacks the physical 

meaning of energy. 

(d) A classification system is proposed for the compatibility paths of mechanisms. It 

groups points into five categories according to their behaviour. Unlike elastic 

structures, the concept of stability cannot be applied to compatibility due to the lack 

of an exact match of the potential energy of structures. The axis of the classification 

is the distinction between regular and split-vanish behaviour. 

(e) We have applied existing methods to the analysis of compatibility of mechanisms. 

We found that the matrix method worked well with most cases except when the 

compatibility paths exhibit split-vanish behaviour. We have also shown that this 

method can be adopted to the analysis of equilibrium. Furthermore, an analogue of 

the stiffness of structures is also created for mechanisms. Though these methods do 

not always prove to be the most efficient, a formal analogy is nonetheless proven to 

exist. 

(f) The application of elementary catastrophe theory to the kinematics of mechanisms 

is proposed. The analogy between compatibility and equilibrium validates the 

classification of singularities of compatibility paths according to the classification 

system given in Thom’s theorem. Mechanism examples have demonstrated a few 

cuspoid catastrophe types. A proposal has been made to generate higher-order 
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catastrophes. The analysis of the degenerate bifurcation justified the generation of 

arbitrary cuspoid catastrophe types analogously to the behaviour of the degenerate 

structure in structural stability. 

6.2 Future research 

A few questions may define the directions of future research in the subject as follows. 

This dissertation is primarily concerned with the existence and behaviour of 

singularities of compatibility paths of mechanisms. However, practical engineering 

design aims to avoid singularities which have an undesired effect on the design 

objectives. Examples demonstrated that the simple way of disturbing the system by 

small imperfections usually makes the bifurcation disappear. Though a sensible demand 

may arise to address the problem with a systematic approach and to develop appropriate 

design rules. 

Furthermore, we have found the analytical formulation of the compatibility 

conditions became complicated as complex linkages were considered. Further study 

could be done on a more systematic way of writing the conditions. Numerical methods 

could be taken into consideration in order to develop an automated approach for the 

calculation of the system. 

We have also encountered the more complicated situation where the increase of the 

instantaneous degrees-of-freedom at a singular point is more than one. In case of an 

increase of two, the corresponding equilibrium cases are the umbilic catastrophes whose 

equilibrium equations are derived from the potential function as a gradient vector. 

Consequently, the equations are related in a certain way that may not be valid for the 

compatibility conditions. It is to be the subject of further research whether compatibility 

can be formulated as a gradient system and how any classification can be carried out. 

We have restricted our investigation to mechanisms with a single degree-of-freedom, 

which form a significant part of mechanical engineering research and design. However, 
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linkages can also be constructed with two or more degrees-of-freedom. The 

compatibility paths now are replaced by higher-dimensional manifolds. It is yet 

unexplored what relationship such systems may have with equilibrium of structures. 

The extension of the analogy into this direction requires a substantial amount of study. 
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