




# Water Distribution System

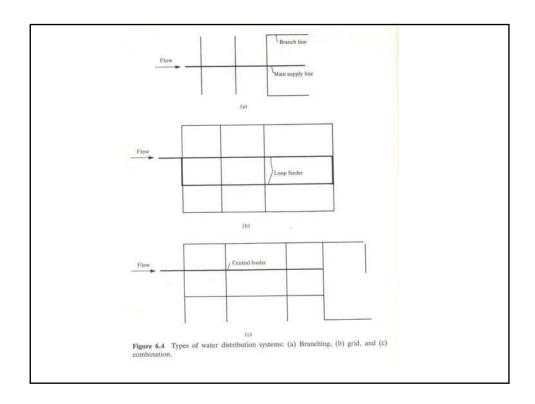
Water distribution systems are designed to adequately satisfy the water requirements for a combinations of the following demands:

- Domestic
- Commercial
- Industrial
- Fire-fighting
- The system should be capable of meeting the demands at all times and at satisfactory pressure



> The main elements of the distribution system are:

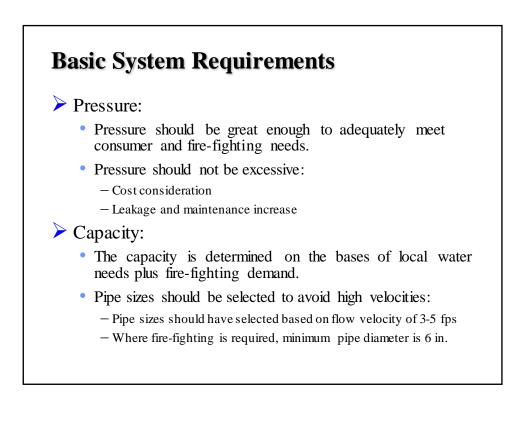
- Pipe systems
- Pumping stations
- Storage facilities
- Fire hydrants
- House service connections
- Meters
- Other appurtenances


# **System Configurations**

> Distribution systems may be classified as:

- Branching systems
- Grid systems
- A combination of the above two systems

> The configuration of the system is dictated by:


- Street patterns
- Topography
- Degree and type of development of the area
- Location of the treatment and storage works.

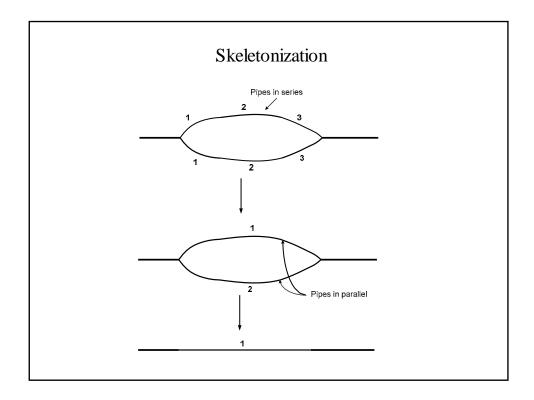


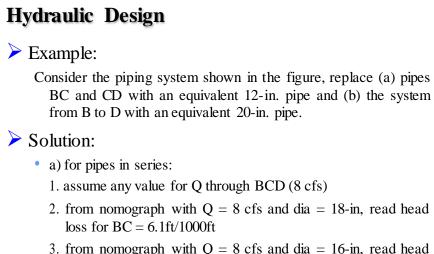
## **System Configurations**

> Branching vs. grid systems:

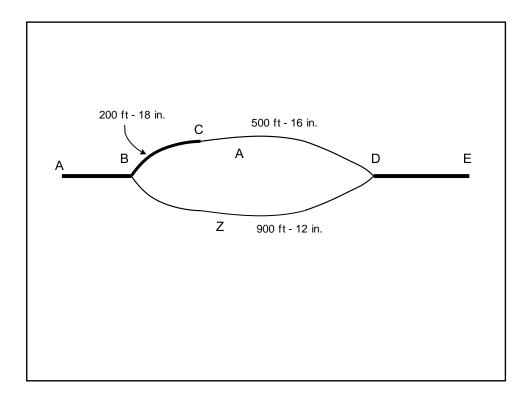
- A grid system is usually preferred over a branching system, since it can furnish a supply to any point from at least two directions
- The branching system has dead ends, therefore, does not permit supply from more than one direction. Should be avoided where possible.
- In locations where sharp changes in topography occur (hilly or mountainous areas), it is common practice to divide the distribution system into two or more service areas.




# Hydraulic Design


The design flowrate is based on the maximum of the following two rates:

- · Maximum day demand plus fire demand
- Maximum hourly rate


Analysis of distribution system:

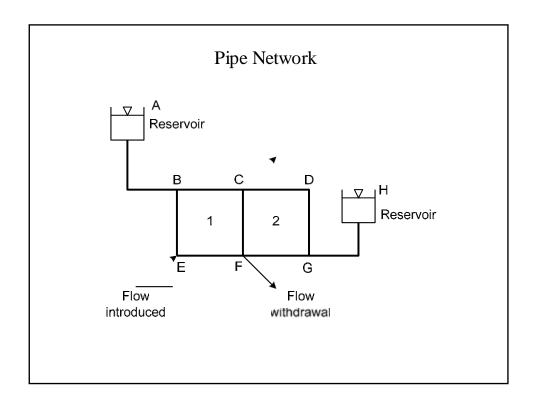
- Distribution system have series of pipes of different diameters. In order to simplify the analysis, skeletonizing is used.
- Skeletonizing is the replacement of a series of pipes of varying diameters with one equivalent pipe or replacing a system of pipes with one equivalent pipe.

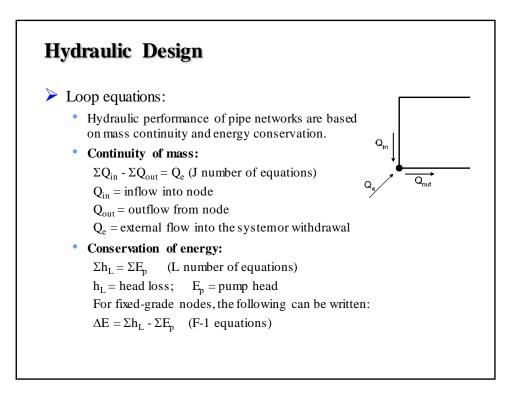


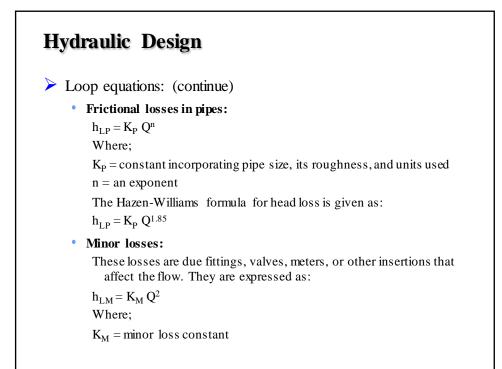


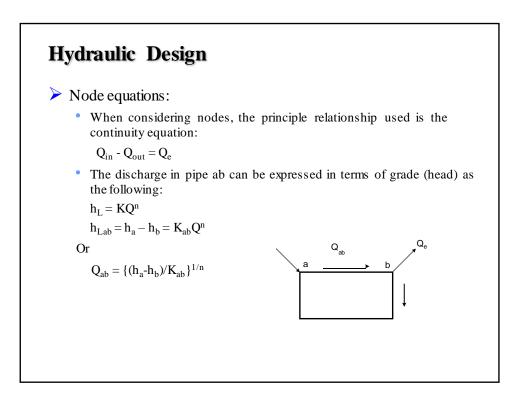
- 3. from nomograph with Q = 8 cfs and dia = 16-in, read head loss for CD = 11ft/1000ft
- 4. total head loss  $BD = (6.1/1000) \times 200 + (11/1000) \times 500 = 6.72 \text{ ft}$

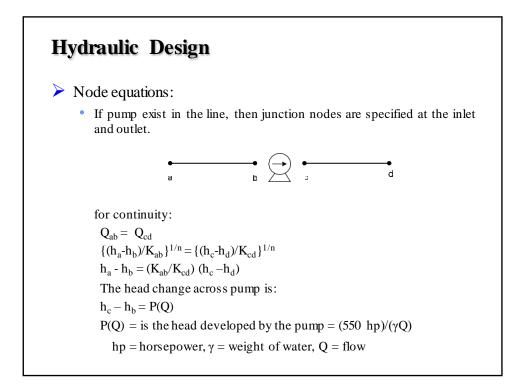


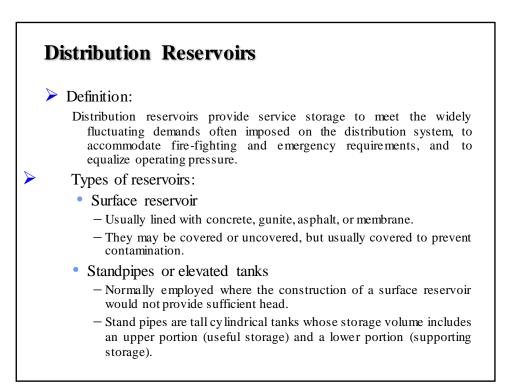

|                      | 50 7 20,000                                        | 0.01                                                               | 0.5 -            |
|----------------------|----------------------------------------------------|--------------------------------------------------------------------|------------------|
| Nome anoth for Horan | 40                                                 | -                                                                  | 0.5 -            |
| Nomograph for Hazen  |                                                    | 0.015                                                              | 0.6 -            |
| Williams equation    | 1 84-                                              | -                                                                  | 0.0 -            |
| winnants equation    | 20 10,000 72 -                                     | 0.03                                                               | 0.7 -            |
|                      | F-8000 66-                                         | 0.06                                                               |                  |
|                      | 15 7000 60-                                        | 0.06<br>0.07<br>0.07<br>0.08                                       | 0.8 -            |
|                      | - 6000 54 -<br>- 5000 48 -                         | 0.08 =                                                             | 0.9 -            |
|                      |                                                    | 0.15                                                               | 1-               |
|                      | 9                                                  | 0.2                                                                | 1.1 -            |
|                      | 7                                                  | -                                                                  | 1.2 -            |
|                      | 6 1 2000 30 - 28 - 28 - 28 - 28 - 28 - 28 - 28 - 2 | 0.3                                                                | 1.3 -            |
|                      | 5 26 - 24 -                                        | 0.5                                                                | 1.4              |
|                      | 4 2000 24 - 22 -                                   | 0.5<br>0.6<br>0.7<br>1<br>0.7<br>1<br>0.7<br>1<br>0.7              | 1.6 -            |
|                      | 1500 <u><u><u></u></u> 18-</u>                     | 8 13                                                               | 1.7 -<br>¥ 1.8 - |
|                      | 10 mole 16-                                        | 2 1.5                                                              | 1.9-             |
|                      | 3 1000 N 3 14-                                     | 18 2                                                               | 2.0              |
|                      | 00000000000000000000000000000000000000             | 2 -<br>5 3 -                                                       | 1.8              |
|                      | 1.5 F700 A                                         | the of head, ft/1000 ft<br>a 4 5 5 5 1 4 0<br>1 1 1 1 Lution fulfi | 2.6              |
|                      | 600 10-                                            | - 5 T                                                              | 2.8              |
|                      | 500 8-                                             | 7 -                                                                | 3.0-3.2-         |
|                      | 0.9 400 7-                                         | 10                                                                 | 3.4 -            |
|                      | 0.8                                                | 15                                                                 | 3.6              |
|                      | or 1                                               | 20 -                                                               | 4-               |
|                      | 0.5 250 5-                                         | 30 -                                                               | 1                |
|                      | 0.4 200 4-                                         | 40 -                                                               | 5-               |
|                      | - 150                                              | 50 E                                                               | 1                |
|                      | 0.3-5 3-                                           | 50 TT TTTTTTTTT                                                    | 6                |
|                      | £.m                                                | 100 -                                                              | 1                |
|                      | 0.2 = 100                                          | 150                                                                | 7                |
|                      | E 80 2-                                            | 200 -                                                              | 8                |
|                      | Eeo                                                | 300 -                                                              | 1                |
|                      | 1 50                                               | 400 -                                                              | 9                |
|                      | 0.1                                                |                                                                    | 10-              |

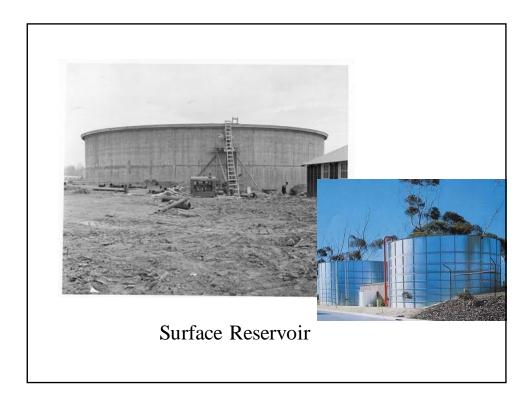

# Hydraulic Design 5. the total head loss for 12-in equivalent pipe at 8 cfs is 45ft/1000ft (from nomograph) 6. head loss BCD = head loss BD, therefore; $6.72ft = L_{eq} * (45/1000)$ $L_{eq} = 6.72 * (1000/45) = 149 \text{ ft}$ • b) for pipes in parallel: 1. assume any value of head loss between BD (h<sub>L</sub>=5 ft) 2. for the equivalent pipe (L = 149 ft), head loss per 1000ft is; $h_L = (5/149)*1000 = 33.5ft/1000ft$ Diameter of equivalent pipe = 12-in $Q_{eq} = 6.8 \text{ cfs}$ (from nomograph)

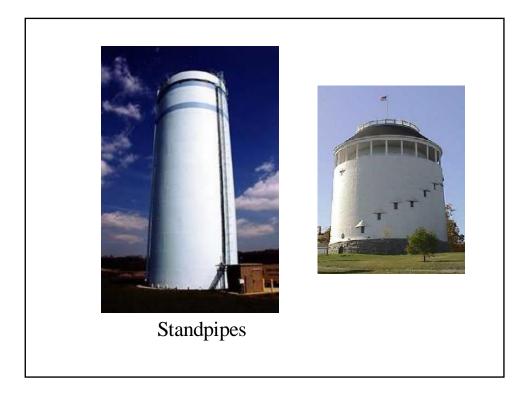

### Hydraulic Design

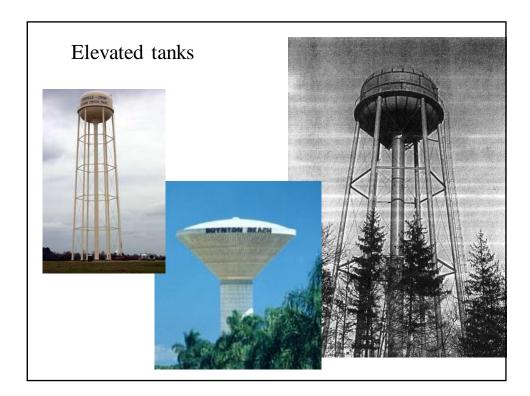

3. for the 900 ft 12-in pipe:  $h_L = (5/900)*1000 = 5.5ft/1000ft$   $Q_{900} = 2.6 cfs$  (from nomograph) 4. total flow = 6.9 + 2.6 = 9.4 cfs 5. for Q = 9.4 cfs and 20-in pipe: head loss = 4.8ft/1000ft (nomograph) 6. head loss 12-in pipe = head loss 20-in pipe 5 ft = L \* (4.8ft/1000ft)L = 5 \* (1000/4.8) = 1042 ft


### Hydraulic Design > Pipe networks: • Pipe networks are composed of a number of constant-diameter pipe sections containing pumps and fittings. • From next figure, following are defined: - Node: end of each pipe section. (A, B, C, D, E, F, G, and H) - Junction node: points where pipes meet and where flow may be introduces or withdrawn. (B, C, D, E, F, and G) - Fixed-grade nodes: points where constant grade is maintained. (A and B) - Loops: closed pipe circuits. (1 and 2) • From above terminology, we can write the following eq. P = J + L + F - 1Where: P = # pipes, J = # Junction node, L = #loops, F = # fixed-grade nodes



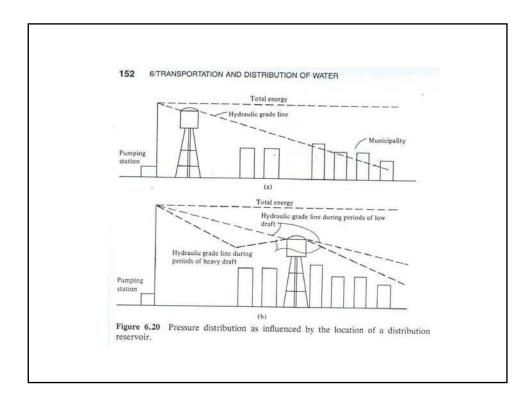












## **Distribution Reservoirs**

#### > Location

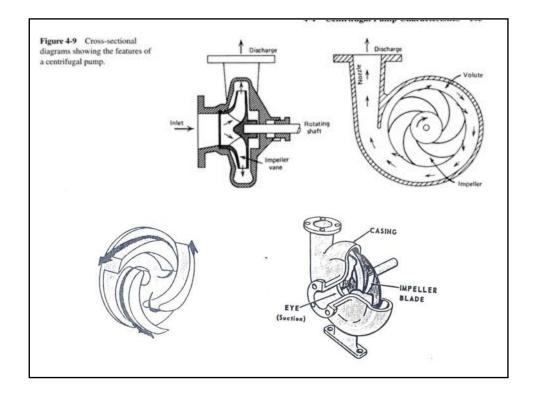
- Distribution reservoirs should be located strategically for maximum benefits.
- Normally the reservoir should be near the center of use.
- For large areas, a number of reservoirs may be located at key locations
- A central location decreases the friction losses by reducing the distance to the serviced area.

#### Storage function

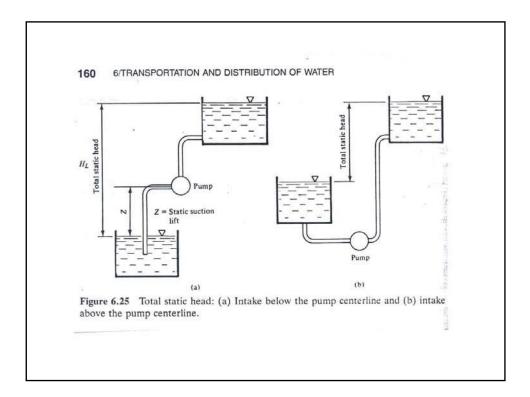
- To provide head required head.
- To provide excess demand such as:
  - fire-fighting: should be sufficient to provide flow for 10-12 hours.
  - emergency demands: to sustain the demand during failure of the supply system and times of maintenance.
- To provide equalization storage.

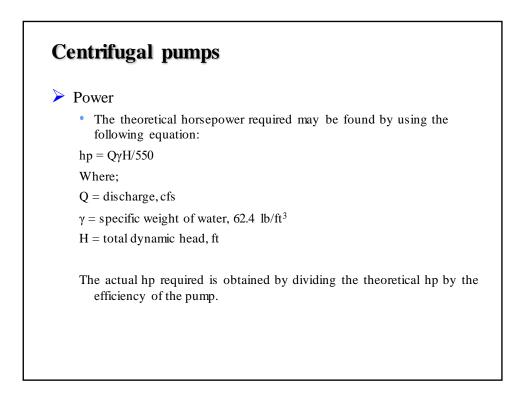


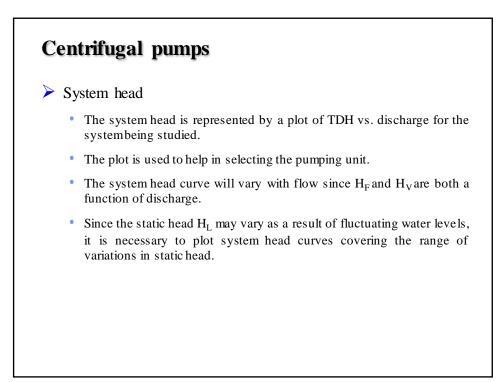
#### Pumping $\geq$ Introduction Pumping is an important part of the transportation and distribution • system. • Requirements vary from small units (few gallons per minute) to large units (several hundred cubic feet per second) • Two kinds of pumping equipments are mainly used; centrifugal and displacement pumps. > Types of pumps • Low-lift pumps: used to lift water from a source to the treatment plant High-service pumps: used to discharge water under pressure to the • distribution system • Booster pumps: used to increase pressure in the distribution system. Recirculation pumps: used within a treatment plant. • • Well pumps: used to left water from wells.

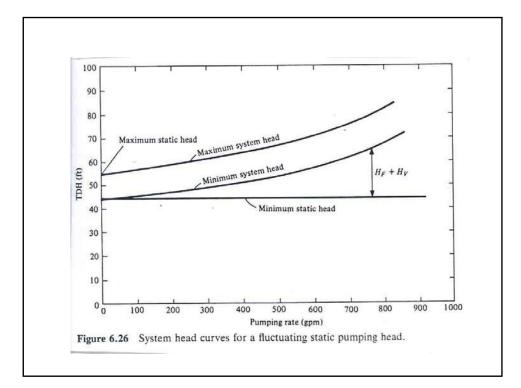

## **Centrifugal pumps**

- > Used to lift and transport water
- > Widely used in water and wastewater applications due to:
  - Simplicity of installation and operation.
  - Compactness.
  - Low cost compared to others.
  - Operate under variety of conditions


#### How do they operate:


- On the principle of centrifugal force; force of pushing outwards.
- The impeller driven at high speed throws water into the casing
- Water is channeled through a nozzle to the discharge piping

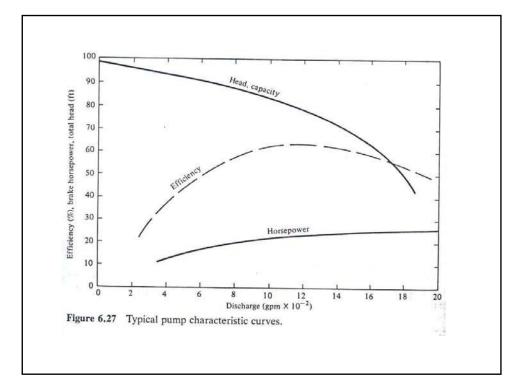


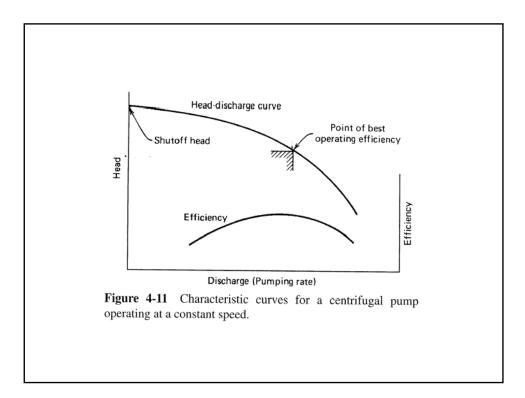



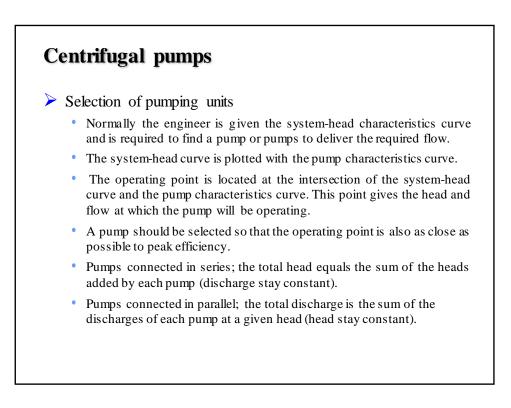

| <ul><li>Centrifugal pumps</li><li>Pumping head</li></ul> |                                                                                                                                       |  |  |  |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                          |                                                                                                                                       |  |  |  |
|                                                          | • TDH is composed of the following:                                                                                                   |  |  |  |
|                                                          | <ul> <li>The difference in elevation between the pump centerline and the elevation<br/>to which the water is to be raised.</li> </ul> |  |  |  |
|                                                          | <ul> <li>The difference in elevation between the level of the suction pool and th<br/>pump centerline</li> </ul>                      |  |  |  |
|                                                          | - The friction losses                                                                                                                 |  |  |  |
|                                                          | - Velocity head                                                                                                                       |  |  |  |
|                                                          | $TDH = H_{L} + H_{F} + H_{V}$                                                                                                         |  |  |  |
|                                                          | Where;                                                                                                                                |  |  |  |
|                                                          | $H_L = total static head$                                                                                                             |  |  |  |
|                                                          | $H_F = total friction head$                                                                                                           |  |  |  |
|                                                          | $H_V =$ velocity head (V <sup>2</sup> /2g)                                                                                            |  |  |  |
|                                                          |                                                                                                                                       |  |  |  |

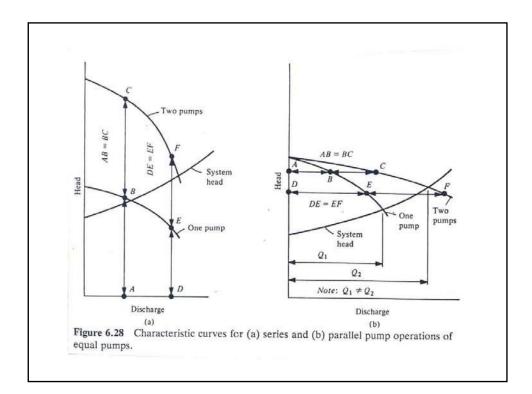








## **Centrifugal pumps**


#### > Pump characteristics

- Each pump has its own characteristics relative to power requirements, efficiency, and head developed as a function of rate of flow.
- These relationships are usually given as a set of pump characteristic curves for a specified speed.
- Pump characteristic curves are used in conjunction with system-head curves to select suitable pumping equipment for a particular installation.
- As the flow of the centrifugal pump increases, the head will fall.
- At maximum efficiency, the discharge is known as *normal* or *rated discharge*.
- To change the flow, the practical and efficient approach is to provide two or more pumps in parallel so that the flow may be carried at close to the peak efficiency.
- The normal range of efficiency is between 50-85%.









References:

- 1- Water Distribution System Hand Book by Larry W. Mays Editor in Chief Department of Civil and Environmental Engineering Arizona State University Tempe, Arizona
- 2- Water Distribution Systems by Dragan Savic and John Banyard
- 3- Design of Water Supply Pipe Networks by Prabhata K. Swamee Ashok K. Sharma,

2008