CE SE SISE

Voltage Contro

Static Var

Compensator)

Define Static VAR Compensator:

absorber whose output is adjusted to exchange capacitive or inductive power in order to control reactive power flow in power systems. IEEE defines Static VAR Compensator as a shunt connected static VAR generate or

Power Transfer Theory:

Figure 1. 1 Power transmission system: (a) simplified model; (b) phase diagram [5]

$$I_{d1} = \frac{V_2 \sin \delta}{X_L}, \qquad I_{q1} = \frac{V_1 - V_2 \cos \delta}{X_L}$$
 (1-2)

The active power and reactive power at bus 1 are given by:

$$P_1 = \frac{V_1 V_2 \sin \delta}{X_L}, \qquad Q_1 = \frac{V_1 (V_1 - V_2 \cos \delta)}{X_L}$$
 (1-3)

Similarly, the active and reactive components of the current flow at bus 2 can be given

DV:

$$I_{d2} = \frac{V_1 \sin \delta}{X_L}, \qquad I_{q2} = \frac{V_2 - V_1 \cos \delta}{X_L}$$
 (1

The active power and reactive power at bus 2 are given by:

$$P_2 = \frac{V_1 V_2 \sin \delta}{X_L}, \qquad Q_2 = \frac{V_2 (V_2 - V_1 \cos \delta)}{X_L}$$
 (1-5)

Sending end

Receiving end

400kV Transmission Line (uncompensated)

Advantage of VAR compensator

1-Control Power Follow.

2-Increasing distribution reliability.

3-Load balance.

4-Power Factor Correction (increase power quality).

5-Voltage Regulation.

6-Removing harmonics.

7-Increasing capacity of Power Transformers, Transmission Lines, Power Cables

8-Saving of Money.

9-Increase System Stability.

10-Remove voltage flicker.

11-Increase life span of generators.

12-Increase life span of transformer on load tap changer.

VAR Compensator Types

1-Mechanical Switching Capacitor and Reactor: Not use in KRG grid

VAR Compensator Types

2-Synchronous Condenser: synchronous generator and a field control circuitry

Direct air-cooled generator

VAR Compensator Types

3-Static VAR Compensator (SVC): Like used by POLTIX STEEL Factory- ERBIL

Comparing between VAR Compensator Types

9	00	7	6	O1	4	3	2	-	No
Cooling System	Maintenance	Semiconductor	Change in VAR	Operating Voltage	Cost	Time Response	Area	Fuel	ltems
No	Easy	No	in step	HV, MV	High	70-100 ms	Very High	No	MSC MSR
Yes	Not Easy	No	in step	HV, MV	High	> 100 ms	High	Yes	Syncho Condenser
Yes	Easy	Yes	Linearly	M	Low	20 to 30 ms	Low	No	SVC

Static VAR Compensator Equipment

Transformer (for HV & EHV)

TCR

TSC

Filter

SVCs Centrals, NGC, UK 275 kV, 150 c / 75 i MVar

SVC Control and Protection

SVC in Container

Container of SVC Jember

STATCOM (for DC generation)

50 MVAR Mobile STATCOM 125 % Overload 2 Seconds

Price for SVC (2018)

Capacitor Bank: 2 to 10 \$1 k VAR

SVC:
K WAR
STATCOM:

40 to 80 \$/

60 to 130 \$/ k

ABB Installed more than 500 SVC until 2018

Suggestions

1- Replace existing capacitor bank in substations by SVC

Calculations:

For ERBIL substations: 66 capacitor bank X 10MVAR = 660 MVAR

81 capacitor bank X 5MVAR = 405 MVAR Total additional MVAR = 1,065 MVAR

2- Future new substations will install SVC instead of capacitor

Any questions?

hank You