
Kalman Filte

Abstract

The Kalman filter (KF) has received a huge interest from the industrial electronics

community and has played a key role in many engineering fields since the 1980s, ranging,

without being exhaustive, trajectory estimation, state and parameter estimation for control or

diagnosis, data merging, signal processing, and so on. This paper provides a brief overview of

the industrial applications and implementation issues of the KF in six topics of the industrial

electronics community, highlighting some relevant reference papers and giving future

research trends.

Introduction

Kalman filter is an algorithm that provides estimates of some unknown

variables given the measurements observed over time. Kalman filters have been

demonstrating its usefulness in various applications. Kalman filters have

relatively simple form and require small computational power.

A common application is for guidance, navigation, and control of vehicles,

particularly aircraft, spacecraft and dynamically positioned ships. Furthermore,

the Kalman filter is a widely applied concept in time series analysis used in

fields such as signal processing and econometrics. Kalman filters also are one of

the main topics in the field of robotic motion planning and control and can be

used in trajectory optimization. The Kalman filter also works for modeling the

central nervous system's control of movement. Due to the time delay between

issuing motor commands and receiving sensory feedback, use of the Kalman

filter supports a realistic model for making estimates of the current state of the

motor system and issuing updated commands.

The algorithm works in a two-step process. In the prediction step, the Kalman

filter produces estimates of the current state variables, along with their

uncertainties. Once the outcome of the next measurement (necessarily corrupted

with some amount of error, including random noise) is observed, these

estimates are updated using a weighted average, with more weight being given

to estimates with higher certainty. The algorithm is recursive. It can run in real

time, using only the present input measurements and the previously calculated

state and its uncertainty matrix; no additional past information is required.

Optimality of the Kalman filter assumes that the errors are Gaussian.

Extensions and generalizations to the method have also been developed, such as

the extended Kalman filter and the unscented Kalman filter which work on

nonlinear systems. The underlying model is a hidden Markov model where the

state space of the latent variables is continuous and all latent and observed

variables have Gaussian distributions. Also, Kalman filter has been successfully

used in multi-sensor fusion, and distributed sensor networks to develop

distributed or consensus Kalman filter.

How a Kalman filter sees your problem

Let’s look at the landscape we’re trying to interpret. We’ll continue with a
simple state having only position and velocity.

𝑥⃗ =[𝑝𝑣]

We don’t know what the actual position and velocity are; there are a whole
range of possible combinations of position and velocity that might be true, but
some of them are more likely than others:

The Kalman filter assumes that both variables (postion and velocity, in our
case) are random and Gaussian distributed. Each variable has a mean value 𝜇,
which is the center of the random distribution (and its most likely state), and
a variance 𝜎2, which is the uncertainty:

In the above picture, position and velocity are uncorrelated, which means that
the state of one variable tells you nothing about what the other might be.

The example below shows something more interesting: Position and velocity
are correlated. The likelihood of observing a particular position depends on
what velocity you have:

This kind of situation might arise if, for example, we are estimating a new
position based on an old one. If our velocity was high, we probably moved
farther, so our position will be more distant. If we’re moving slowly, we didn’t
get as far.

This kind of relationship is really important to keep track of, because it gives
us more information: One measurement tells us something about what the
others could be. And that’s the goal of the Kalman filter, we want to squeeze as
much information from our uncertain measurements as we possibly can!

This correlation is captured by something called a covariance matrix. In short,
each element of the matrix Σ𝑖𝑗 is the degree of correlation between the ith state
variable and the jth state variable.

You might be able to guess that the covariance matrix is symmetric, which
means that it doesn’t matter if you swap i and j. Covariance matrices are often
labelled “𝚺”, so we call their elements “Σ𝑖𝑗”.

Describing the problem with matrices

We’re modeling our knowledge about the state as a Gaussian blob, so we need
two pieces of information at time 𝑘: We’ll call our best estimate 𝐱 ̂ 𝐤 (the mean,
elsewhere named 𝜇), and its covariance matrix 𝐏𝐤.

(Of course we are using only position and velocity here, but it’s useful to
remember that the state can contain any number of variables, and represent
anything you want).

Next, we need some way to look at the current state (at time k-1) and predict
the next state at time k. Remember, we don’t know which state is the “real” one,
but our prediction function doesn’t care. It just works on all of them, and gives
us a new distribution:

We can represent this prediction step with a matrix, 𝐅𝐤:

It takes every point in our original estimate and moves it to a new predicted
location, which is where the system would move if that original estimate was
the right one.

Let’s apply this. How would we use a matrix to predict the position and velocity
at the next moment in the future? We’ll use a really basic kinematic formula:

In other words:

We now have a prediction matrix which gives us our next state, but we still
don’t know how to update the covariance matrix.

This is where we need another formula. If we multiply every point in a
distribution by a matrix 𝐀, then what happens to its covariance matrix Σ?

Well, it’s easy. I’ll just give you the identity:

So combining (4) with equation (3):

External influence

We haven’t captured everything, though. There might be some changes
that aren’t related to the state itself— the outside world could be affecting the
system.

For example, if the state models the motion of a train, the train operator might
push on the throttle, causing the train to accelerate. Similarly, in our robot
example, the navigation software might issue a command to turn the wheels or
stop. If we know this additional information about what’s going on in the world,
we could stuff it into a vector called 𝐮𝑘→, do something with it, and add it to
our prediction as a correction.

Let’s say we know the expected acceleration 𝑎 due to the throttle setting or
control commands. From basic kinematics we get:

In matrix form:

𝐁𝑘 is called the control matrix and 𝐮𝑘→ the control vector. (For very simple
systems with no external influence, you could omit these).

Let’s add one more detail. What happens if our prediction is not a 100%
accurate model of what’s actually going on?

External uncertainty

Everything is fine if the state evolves based on its own properties. Everything
is still fine if the state evolves based on external forces, so long as we know
what those external forces are.

But what about forces that we don’t know about? If we’re tracking a
quadcopter, for example, it could be buffeted around by wind. If we’re tracking
a wheeled robot, the wheels could slip, or bumps on the ground could slow it
down. We can’t keep track of these things, and if any of this happens, our
prediction could be off because we didn’t account for those extra forces.

We can model the uncertainty associated with the “world” (i.e. things we aren’t
keeping track of) by adding some new uncertainty after every prediction step:

Every state in our original estimate could have moved to a range of states.
Because we like Gaussian blobs so much, we’ll say that each point in 𝐱̂ 𝑘−1 is
moved to somewhere inside a Gaussian blob with covariance 𝐐𝑘. Another way
to say this is that we are treating the untracked influences as noise with
covariance 𝐐𝑘.

This produces a new Gaussian blob, with a different covariance (but the same
mean):

We get the expanded covariance by simply adding 𝐐𝑘, giving our complete
expression for the prediction step:

In other words, the new best estimate is a prediction made from previous best
estimate, plus a correction for known external influences.

And the new uncertainty is predicted from the old uncertainty, with
some additional uncertainty from the environment.

All right, so that’s easy enough. We have a fuzzy estimate of where our system
might be, given by 𝐱 ̂ 𝑘 and 𝐏𝑘. What happens when we get some data from our
sensors?

Refining the estimate with measurements

We might have several sensors which give us information about the state of our
system. For the time being it doesn’t matter what they measure; perhaps one
reads position and the other reads velocity. Each sensor tells us
something indirect about the state— in other words, the sensors operate on a
state and produce a set of readings.

Notice that the units and scale of the reading might not be the same as the units
and scale of the state we’re keeping track of. You might be able to guess where
this is going: We’ll model the sensors with a matrix, 𝐇𝑘.

We can figure out the distribution of sensor readings we’d expect to see in the
usual way:

One thing that Kalman filters are great for is dealing with sensor noise. In other
words, our sensors are at least somewhat unreliable, and every state in our
original estimate might result in a range of sensor readings.

From each reading we observe, we might guess that our system was in a
particular state. But because there is uncertainty, some states are more likely
than others to have have produced the reading we saw:

We’ll call the covariance of this uncertainty (i.e. of the sensor noise) 𝐑𝑘. The
distribution has a mean equal to the reading we observed, which we’ll call 𝐳𝑘→.

So now we have two Gaussian blobs: One surrounding the mean of our
transformed prediction, and one surrounding the actual sensor reading we got.

We must try to reconcile our guess about the readings we’d see based on
the predicted state (pink) with a different guess based on our sensor
readings (green) that we actually observed.

So what’s our new most likely state? For any possible reading (𝑧1,𝑧2), we have
two associated probabilities: (1) The probability that our sensor reading 𝐳𝑘→ is

a (mis-)measurement of (𝑧1,𝑧2), and (2) the probability that our previous
estimate thinks (𝑧1,𝑧2) is the reading we should see.

If we have two probabilities and we want to know the chance that both are true,
we just multiply them together. So, we take the two Gaussian blobs and
multiply them:

What we’re left with is the overlap, the region where both blobs are
bright/likely. And it’s a lot more precise than either of our previous estimates.
The mean of this distribution is the configuration for which both estimates are
most likely, and is therefore the best guess of the true configuration given all the
information we have.

Hmm. This looks like another Gaussian blob.

As it turns out, when you multiply two Gaussian blobs with separate means and
covariance matrices, you get a new Gaussian blob with its own mean and
covariance matrix! Maybe you can see where this is going: There’s got to be a
formula to get those new parameters from the old ones!

Combining Gaussians

Let’s find that formula. It’s easiest to look at this first in one dimension. A 1D
Gaussian bell curve with variance 𝜎2 and mean 𝜇 is defined as:

We want to know what happens when you multiply two Gaussian curves
together. The blue curve below represents the (unnormalized) intersection of the
two Gaussian populations:

You can substitute equation (9) into equation (10) and do some algebra (being
careful to renormalize, so that the total probability is 1) to obtain:

We can simplify by factoring out a little piece and calling it 𝐤:

Take note of how you can take your previous estimate and add something to
make a new estimate. And look at how simple that formula is!

But what about a matrix version? Well, let’s just re-write
equations (12) and (13) in matrix form. If Σ is the covariance matrix of a
Gaussian blob, and 𝜇⃗ its mean along each axis, then:

𝐊 is a matrix called the Kalman gain, and we’ll use it in just a moment.

Easy! We’re almost finished!

Putting it all together

We have two distributions: The predicted measurement

with and the observed measurement

with (𝜇1,Σ1)=(𝐳𝑘→,𝐑𝑘). We can just plug these into equation (15) to find their
overlap:

And from (14), the Kalman gain is:

We can knock an 𝐇𝑘 off the front of every term in (16) and (17) (note that one
is hiding inside 𝐊), and an 𝐇𝑇𝑘 off the end of all terms in the equation for 𝐏′𝑘.

…giving us the complete equations for the update step.

And that’s it! 𝐱̂ ′𝑘 is our new best estimate, and we can go on and feed it (along
with 𝐏′𝑘) back into another round of predict or update as many times as we
like.

Conclusions

This paper has summarized the research efforts made over the past two decades about

the application and the digital implementation of KFs in a significant number of

industrial fields. In summary, one of the main issues of this recursive state estimator

was the computational load requirement. Therefore, two research directions have been

mainly investigated. The first one, which started in the 1970s, focused on

factorization methods and fast algorithms. This paper was primarily motivated by

aerospace applications. The second approach, which appeared later, focused on the

design and implementation of highly sophisticated numerical architectures embedded

on FPGAs. Nowadays, the integration of KFs or variants of the KF (e.g., UKFs) into

industrial systems is not very widespread for two main reasons, i.e., the complexity of

the algorithm compared with the classical Luenberger observers and the

computational load requirement to be embedded on a low computational power

processor. However, due to the availability of new lowcost and highly elaborate

processors (such as floating-point DSPs targeted at real-time process control

applications and system-on-chips), the KF is likely to spread more and more and still

has a bright future ahead of it.

References:

1- Ghysels, Eric; Marcellino, Massimiliano (2018), Applied Economic

Forecasting using Time Series Methods. New York, NY: Oxford University

Press. p. 419.

2- Humpherys, Jeffrey (2012), "A Fresh Look at the Kalman Filter". Society

for Industrial and Applied Mathematics. 54 (4): 801–823.

3- Kalman, R. E. (1960), "A New Approach to Linear Filtering and Prediction

Problems". Journal of Basic Engineering. 82: 35–45.

4- N. Bergman, “Recursive Bayesian estimation (1999),: Navigation and

tracking applications,” Ph.D. dissertation, Linköping Univ., Linköping,

Sweden.

5- RodrÌguez, A., and Ruiz, E. (2012), íBootstrap prediction mean squared

errors of unobserved states based on the Kalman Ölter with estimated

parametersí, Computational Statistics and Data Analysis, 56:62-74.

6- Rojas, A.J. (2011), íOn the discrete-time algebraic Riccati equation and its

solution in closed-formí, Preprints of the 18th IFAC World Congress, Milan.

7- Simon D (2006), Optimal State Estimation: Kalman, H Infinity, and

Nonlinear Approaches. Oxford: John Wiley & Sons;

8- Simon Julier and Jeffrey Uhlmann (1997), A new extension of the kalman

filter to nonlinear systems. Int. Symp. Aerospace/Defense Sensing, Simul.

And Controls, Orlando, FL.

9- Wolpert, Daniel; Ghahramani, Zoubin (2000), "Computational principles of

movement neuroscience". Nature Neuroscience. 3: 1212–7.

10- Zarchan Paul; (2000), Fundamentals of Kalman Filtering: A Practical

Approach. American Institute of Aeronautics and Astronautics, Incorporated.

11- Quenneville, B., and Singh (2000), íBayesian prediction mean squared

error for state space models with estimated parametersí, Journal of Time

Series Analysis, 21:219-236.

