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History 
The PLC was invented in response to the needs of the American automotive 
manufacturing industry. Programmable logic controllers were initially adopted by the 
automotive industry where software revision replaced the re-wiring of hard-wired 
control panels when production models changed. 

Before the PLC, control, sequencing, and safety interlock logic for manufacturing 
automobiles was accomplished using hundreds or thousands of relays, cam timers, 
and drum sequencers and dedicated closed-loop controllers. The process for updating 
such facilities for the yearly model change-over was very time consuming and 
expensive, as electricians needed to individually rewire each and every relay. 

Digital computers, being general-purpose programmable devices, were soon applied 
to control of industrial processes. Early computers required specialist programmers, 
and stringent operating environmental control for temperature, cleanliness, and power 
quality. Using a general-purpose computer for process control required protecting the 
computer from the plant floor conditions. An industrial control computer would have 
several attributes: it would tolerate the shop-floor environment, it would support 
discrete (bit-form) input and output in an easily extensible manner, it would not 
require years of training to use, and it would permit its operation to be monitored. The 
response time of any computer system must be fast enough to be useful for control; 
the required speed varying according to the nature of the process.[1] 

In 1968 GM Hydramatic (the automatic transmission division of General Motors) 
issued a request for proposal for an electronic replacement for hard-wired relay 
systems. The winning proposal came from Bedford Associates of Bedford, 
Massachusetts. The first PLC, designated the 084 because it was Bedford Associates' 
eighty-fourth project, was the result.[2] Bedford Associates started a new company 
dedicated to developing, manufacturing, selling, and servicing this new product: 
Modicon, which stood for MOdular DIgital CONtroller. One of the people who 
worked on that project was Dick Morley, who is considered to be the "father" of the 
PLC.[3] The Modicon brand was sold in 1977 to Gould Electronics, and later acquired 
by German Company AEG and then by French Schneider Electric, the current owner. 

One of the very first 084 models built is now on display at Modicon's headquarters in 
North Andover, Massachusetts. It was presented to Modicon by GM, when the unit 
was retired after nearly twenty years of uninterrupted service. Modicon used the 84 
moniker at the end of its product range until the 984 made its appearance. 

The automotive industry is still one of the largest users of PLCs. 

 

 



Development 
Early PLCs were designed to replace relay logic systems. These PLCs were 
programmed in "ladder logic", which strongly resembles a schematic diagram of relay 
logic. This program notation was chosen to reduce training demands for the existing 
technicians. Other early PLCs used a form of instruction list programming, based on a 
stack-based logic solver. 

Modern PLCs can be programmed in a variety of ways, from ladder logic to more 
traditional programming languages such as BASIC and C. Another method is State 
Logic, a very high-level programming language designed to program PLCs based on 
state transition diagrams. 

Many early PLCs did not have accompanying programming terminals that were 
capable of graphical representation of the logic, and so the logic was instead 
represented as a series of logic expressions in some version of Boolean format, similar 
to Boolean algebra. As programming terminals evolved, it became more common for 
ladder logic to be used, for the aforementioned reasons and because it was a familiar 
format used for electromechanical control panels. Newer formats such as State Logic 
and Function Block (which is similar to the way logic is depicted when using digital 
integrated logic circuits) exist, but they are still not as popular as ladder logic. A 
primary reason for this is that PLCs solve the logic in a predictable and repeating 
sequence, and ladder logic allows the programmer (the person writing the logic) to see 
any issues with the timing of the logic sequence more easily than would be possible in 
other formats. 

Programming 

Early PLCs, up to the mid-1980s, were programmed using proprietary programming 
panels or special-purpose programming terminals, which often had dedicated function 
keys representing the various logical elements of PLC programs.[2] Programs were 
stored on cassette tape cartridges. Facilities for printing and documentation were very 
minimal due to lack of memory capacity. The very oldest PLCs used non-volatile 
magnetic core memory. 

More recently, PLCs are programmed using application software on personal 
computers. The computer is connected to the PLC through Ethernet, RS-232, RS-485 
or RS-422 cabling. The programming software allows entry and editing of the ladder-
style logic. Generally the software provides functions for debugging and 
troubleshooting the PLC software, for example, by highlighting portions of the logic 
to show current status during operation or via simulation. The software will upload 
and download the PLC program, for backup and restoration purposes. In some models 
of programmable controller, the program is transferred from a personal computer to 
the PLC through a programming board which writes the program into a removable 
chip such as an EEPROM or EPROM. 

 



Functionality 
The functionality of the PLC has evolved over the years to include sequential relay 
control, motion control, process control, distributed control systems and networking. 
The data handling, storage, processing power and communication capabilities of some 
modern PLCs are approximately equivalent to desktop computers. PLC-like 
programming combined with remote I/O hardware, allow a general-purpose desktop 
computer to overlap some PLCs in certain applications. Regarding the practicality of 
these desktop computer based logic controllers, it is important to note that they have 
not been generally accepted in heavy industry because the desktop computers run on 
less stable operating systems than do PLCs, and because the desktop computer 
hardware is typically not designed to the same levels of tolerance to temperature, 
humidity, vibration, and longevity as the processors used in PLCs. In addition to the 
hardware limitations of desktop based logic, operating systems such as Windows do 
not lend themselves to deterministic logic execution, with the result that the logic may 
not always respond to changes in logic state or input status with the extreme 
consistency in timing as is expected from PLCs. Still, such desktop logic applications 
find use in less critical situations, such as laboratory automation and use in small 
facilities where the application is less demanding and critical, because they are 
generally much less expensive than PLCs. 

In more recent years, small products called PLRs (programmable logic relays), and 
also by similar names, have become more common and accepted. These are very 
much like PLCs, and are used in light industry where only a few points of I/O (i.e. a 
few signals coming in from the real world and a few going out) are involved, and low 
cost is desired. These small devices are typically made in a common physical size and 
shape by several manufacturers, and branded by the makers of larger PLCs to fill out 
their low end product range. Popular names include PICO Controller, NANO PLC, 
and other names implying very small controllers. Most of these have between 8 and 
12 digital inputs, 4 and 8 digital outputs, and up to 2 analog inputs. Size is usually 
about 4" wide, 3" high, and 3" deep. Most such devices include a tiny postage stamp 
sized LCD screen for viewing simplified ladder logic (only a very small portion of the 
program being visible at a given time) and status of I/O points, and typically these 
screens are accompanied by a 4-way rocker push-button plus four more separate push-
buttons, similar to the key buttons on a VCR remote control, and used to navigate and 
edit the logic. Most have a small plug for connecting via RS-232 or RS-485 to a 
personal computer so that programmers can use simple Windows applications for 
programming instead of being forced to use the tiny LCD and push-button set for this 
purpose. Unlike regular PLCs that are usually modular and greatly expandable, the 
PLRs are usually not modular or expandable, but their price can be two orders of 
magnitude less than a PLC and they still offer robust design and deterministic 
execution of the logic. 
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As PLCs became more advanced, methods were developed to change the sequence of 
ladder execution, and subroutines were implemented. This simplified programming 
and could also be used to save scan time for high-speed processes; for example, parts 
of the program used only for setting up the machine could be segregated from those 
parts required to operate at higher speed. 

Special-purpose I/O modules, such as timer modules or counter modules, could be 
used where the scan time of the processor was too long to reliably pick up, for 
example, counting pulses from a shaft encoder. The relatively slow PLC could still 
interpret the counted values to control a machine, but the accumulation of pulses was 
done by a dedicated module that was unaffected by the speed of the program 
execution. 

System scale 

A small PLC will have a fixed number of connections built in for inputs and outputs. 
Typically, expansions are available if the base model has insufficient I/O. 

Modular PLCs have a chassis (also called a rack) into which are placed modules with 
different functions. The processor and selection of I/O modules are customized for the 
particular application. Several racks can be administered by a single processor, and 
may have thousands of inputs and outputs. A special high speed serial I/O link is used 
so that racks can be distributed away from the processor, reducing the wiring costs for 
large plants. 

 

 

User interface 

PLCs may need to interact with people for the purpose of configuration, alarm 
reporting or everyday control. A human-machine interface (HMI) is employed for this 
purpose. HMIs are also referred to as man-machine interfaces (MMIs) and graphical 
user interface (GUIs). A simple system may use buttons and lights to interact with the 
user. Text displays are available as well as graphical touch screens. More complex 
systems use programming and monitoring software installed on a computer, with the 
PLC connected via a communication interface. 

Communications 

PLCs have built in communications ports, usually 9-pin RS-232, but optionally EIA-
485 or Ethernet. Modbus, BACnet or DF1 is usually included as one of the 
communications protocols. Other options include various fieldbuses such as 
DeviceNet or Profibus. Other communications protocols that may be used are listed in 
the List of automation protocols. 

Most modern PLCs can communicate over a network to some other system, such as a 
computer running a SCADA (Supervisory Control And Data Acquisition) system or 
web browser. 



PLCs used in larger I/O systems may have peer-to-peer (P2P) communication 
between processors. This allows separate parts of a complex process to have 
individual control while allowing the subsystems to co-ordinate over the 
communication link. These communication links are also often used for HMI devices 
such as keypads or PC-type workstations. 

Programming 

Before the advent of solid-state logic circuits, logical control systems were designed and built 
exclusively around electromechanical relays. Relays are far from obsolete in modern design, 
but have been replaced in many of their former roles as logic-level control devices, relegated 
most often to those applications demanding high current and/or high voltage switching.  

Systems and processes requiring "on/off" control abound in modern commerce and industry, 
but such control systems are rarely built from either electromechanical relays or discrete logic 
gates. Instead, digital computers fill the need, which may be programmed to do a variety of 
logical functions.  

In the late 1960's an American company named Bedford Associates released a computing 
device they called the MODICON. As an acronym, it meant Modular Digital Controller, and 
later became the name of a company division devoted to the design, manufacture, and sale of 
these special-purpose control computers. Other engineering firms developed their own 
versions of this device, and it eventually came to be known in non-proprietary terms as a 
PLC, or Programmable Logic Controller. The purpose of a PLC was to directly replace 
electromechanical relays as logic elements, substituting instead a solid-state digital computer 
with a stored program, able to emulate the interconnection of many relays to perform certain 
logical tasks.  

A PLC has many "input" terminals, through which it interprets "high" and "low" logical states 
from sensors and switches. It also has many output terminals, through which it outputs "high" 
and "low" signals to power lights, solenoids, contactors, small motors, and other devices 
lending themselves to on/off control. In an effort to make PLCs easy to program, their 
programming language was designed to resemble ladder logic diagrams. Thus, an industrial 
electrician or electrical engineer accustomed to reading ladder logic schematics would feel 
comfortable programming a PLC to perform the same control functions.  

PLCs are industrial computers, and as such their input and output signals are typically 120 
volts AC, just like the electromechanical control relays they were designed to replace. 
Although some PLCs have the ability to input and output low-level DC voltage signals of the 
magnitude used in logic gate circuits, this is the exception and not the rule.  

Signal connection and programming standards vary somewhat between different models of 
PLC, but they are similar enough to allow a "generic" introduction to PLC programming here. 
The following illustration shows a simple PLC, as it might appear from a front view. Two screw 
terminals provide connection to 120 volts AC for powering the PLC's internal circuitry, labeled 
L1 and L2. Six screw terminals on the left-hand side provide connection to input devices, 
each terminal representing a different input "channel" with its own "X" label. The lower-left 
screw terminal is a "Common" connection, which is generally connected to L2 (neutral) of the 
120 VAC power source.  
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In this way, the PLC is able to interface with real-world devices such as switches and 
solenoids.  

The actual logic of the control system is established inside the PLC by means of a computer 
program. This program dictates which output gets energized under which input conditions. 
Although the program itself appears to be a ladder logic diagram, with switch and relay 
symbols, there are no actual switch contacts or relay coils operating inside the PLC to create 
the logical relationships between input and output. These are imaginary contacts and coils, if 
you will. The program is entered and viewed via a personal computer connected to the PLC's 
programming port.  

Consider the following circuit and PLC program:  



 

When the pushbutton switch is unactuated (unpressed), no power is sent to the X1 input of 
the PLC. Following the program, which shows a normally-open X1 contact in series with a Y1 
coil, no "power" will be sent to the Y1 coil. Thus, the PLC's Y1 output remains de-energized, 
and the indicator lamp connected to it remains dark.  

If the pushbutton switch is pressed, however, power will be sent to the PLC's X1 input. Any 
and all X1 contacts appearing in the program will assume the actuated (non-normal) state, as 
though they were relay contacts actuated by the energizing of a relay coil named "X1". In this 
case, energizing the X1 input will cause the normally-open X1 contact will "close," sending 
"power" to the Y1 coil. When the Y1 coil of the program "energizes," the real Y1 output will 
become energized, lighting up the lamp connected to it:  



 

It must be understood that the X1 contact, Y1 coil, connecting wires, and "power" appearing 
in the personal computer's display are all virtual. They do not exist as real electrical 
components. They exist as commands in a computer program -- a piece of software only -- 
that just happens to resemble a real relay schematic diagram.  

Equally important to understand is that the personal computer used to display and edit the 
PLC's program is not necessary for the PLC's continued operation. Once a program has been 
loaded to the PLC from the personal computer, the personal computer may be unplugged 
from the PLC, and the PLC will continue to follow the programmed commands. I include the 
personal computer display in these illustrations for your sake only, in aiding to understand the 
relationship between real-life conditions (switch closure and lamp status) and the program's 
status ("power" through virtual contacts and virtual coils).  

The true power and versatility of a PLC is revealed when we want to alter the behavior of a 
control system. Since the PLC is a programmable device, we can alter its behavior by 
changing the commands we give it, without having to reconfigure the electrical components 
connected to it. For example, suppose we wanted to make this switch-and-lamp circuit 
function in an inverted fashion: push the button to make the lamp turn off, and release it to 
make it turn on. The "hardware" solution would require that a normally-closed pushbutton 
switch be substituted for the normally-open switch currently in place. The "software" solution 



is much easier: just alter the program so that contact X1 is normally-closed rather than 
normally-open.  

In the following illustration, we have the altered system shown in the state where the 
pushbutton is unactuated (not being pressed):  

 

In this next illustration, the switch is shown actuated (pressed):  



 

One of the advantages of implementing logical control in software rather than in hardware is 
that input signals can be re-used as many times in the program as is necessary. For example, 
take the following circuit and program, designed to energize the lamp if at least two of the 
three pushbutton switches are simultaneously actuated:  



 

To build an equivalent circuit using electromechanical relays, three relays with two normally-
open contacts each would have to be used, to provide two contacts per input switch. Using a 
PLC, however, we can program as many contacts as we wish for each "X" input without 
adding additional hardware, since each input and each output is nothing more than a single 
bit in the PLC's digital memory (either 0 or 1), and can be recalled as many times as 
necessary.  

Furthermore, since each output in the PLC is nothing more than a bit in its memory as well, 
we can assign contacts in a PLC program "actuated" by an output (Y) status. Take for 
instance this next system, a motor start-stop control circuit:  



 

The pushbutton switch connected to input X1 serves as the "Start" switch, while the switch 
connected to input X2 serves as the "Stop." Another contact in the program, named Y1, uses 
the output coil status as a seal-in contact, directly, so that the motor contactor will continue to 
be energized after the "Start" pushbutton switch is released. You can see the normally-closed 
contact X2 appear in a colored block, showing that it is in a closed ("electrically conducting") 
state.  

If we were to press the "Start" button, input X1 would energize, thus "closing" the X1 contact 
in the program, sending "power" to the Y1 "coil," energizing the Y1 output and applying 120 
volt AC power to the real motor contactor coil. The parallel Y1 contact will also "close," thus 
latching the "circuit" in an energized state:  



 

Now, if we release the "Start" pushbutton, the normally-open X1 "contact" will return to its 
"open" state, but the motor will continue to run because the Y1 seal-in "contact" continues to 
provide "continuity" to "power" coil Y1, thus keeping the Y1 output energized:  



 

To stop the motor, we must momentarily press the "Stop" pushbutton, which will energize the 
X2 input and "open" the normally-closed "contact," breaking continuity to the Y1 "coil:"  



 

When the "Stop" pushbutton is released, input X2 will de-energize, returning "contact" X2 to 
its normal, "closed" state. The motor, however, will not start again until the "Start" pushbutton 
is actuated, because the "seal-in" of Y1 has been lost:  



 

An important point to make here is that fail-safe design is just as important in PLC-controlled 
systems as it is in electromechanical relay-controlled systems. One should always consider 
the effects of failed (open) wiring on the device or devices being controlled. In this motor 
control circuit example, we have a problem: if the input wiring for X2 (the "Stop" switch) were 
to fail open, there would be no way to stop the motor!  

The solution to this problem is a reversal of logic between the X2 "contact" inside the PLC 
program and the actual "Stop" pushbutton switch:  



 

When the normally-closed "Stop" pushbutton switch is unactuated (not pressed), the PLC's 
X2 input will be energized, thus "closing" the X2 "contact" inside the program. This allows the 
motor to be started when input X1 is energized, and allows it to continue to run when the 
"Start" pushbutton is no longer pressed. When the "Stop" pushbutton is actuated, input X2 will 
de-energize, thus "opening" the X2 "contact" inside the PLC program and shutting off the 
motor. So, we see there is no operational difference between this new design and the 
previous design.  

However, if the input wiring on input X2 were to fail open, X2 input would de-energize in the 
same manner as when the "Stop" pushbutton is pressed. The result, then, for a wiring failure 
on the X2 input is that the motor will immediately shut off. This is a safer design than the one 
previously shown, where a "Stop" switch wiring failure would have resulted in an inability to 
turn off the motor.  

In addition to input (X) and output (Y) program elements, PLCs provide "internal" coils and 
contacts with no intrinsic connection to the outside world. These are used much the same as 
"control relays" (CR1, CR2, etc.) are used in standard relay circuits: to provide logic signal 
inversion when necessary.  

To demonstrate how one of these "internal" relays might be used, consider the following 
example circuit and program, designed to emulate the function of a three-input NAND gate. 



Since PLC program elements are typically designed by single letters, I will call the internal 
control relay "C1" rather than "CR1" as would be customary in a relay control circuit:  

 

In this circuit, the lamp will remain lit so long as any of the pushbuttons remain unactuated 
(unpressed). To make the lamp turn off, we will have to actuate (press) all three switches, like 
this:  



 

This section on programmable logic controllers illustrates just a small sample of their 
capabilities. As computers, PLCs can perform timing functions (for the equivalent of time-
delay relays), drum sequencing, and other advanced functions with far greater accuracy and 
reliability than what is possible using electromechanical logic devices. Most PLCs have the 
capacity for far more than six inputs and six outputs. The following photograph shows several 
input and output modules of a single Allen-Bradley PLC.  



 

With each module having sixteen "points" of either input or output, this PLC has the ability to 
monitor and control dozens of devices. Fit into a control cabinet, a PLC takes up little room, 
especially considering the equivalent space that would be needed by electromechanical 
relays to perform the same functions:  



 

One advantage of PLCs that simply cannot be duplicated by electromechanical relays is 
remote monitoring and control via digital computer networks. Because a PLC is nothing more 
than a special-purpose digital computer, it has the ability to communicate with other 
computers rather easily. The following photograph shows a personal computer displaying a 
graphic image of a real liquid-level process (a pumping, or "lift," station for a municipal 
wastewater treatment system) controlled by a PLC. The actual pumping station is located 
miles away from the personal computer display:  
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Programmable controllers are widely used in motion control, positioning control and 
torque control. Some manufacturers produce motion control units to be integrated 
with PLC so that G-code (involving a CNC machine) can be used to instruct machine 
movements.[citation needed] 

PLCs may include logic for single-variable feedback analog control loop, a 
"proportional, integral, derivative" or "PID controller". A PID loop could be used to 
control the temperature of a manufacturing process, for example. Historically PLCs 
were usually configured with only a few analog control loops; where processes 
required hundreds or thousands of loops, a distributed control system (DCS) would 
instead be used. As PLCs have become more powerful, the boundary between DCS 
and PLC applications has become less distinct. 

PLCs have similar functionality as Remote Terminal Units. An RTU, however, 
usually does not support control algorithms or control loops. As hardware rapidly 
becomes more powerful and cheaper, RTUs, PLCs and DCSs are increasingly 
beginning to overlap in responsibilities, and many vendors sell RTUs with PLC-like 
features and vice versa. The industry has standardized on the IEC 61131-3 functional 
block language for creating programs to run on RTUs and PLCs, although nearly all 
vendors also offer proprietary alternatives and associated development environments. 

In recent years "Safety" PLCs have started to become popular, either as standalone 
models (Pilz PNOZ Multi, Sick etc.) or as functionality and safety-rated hardware 
added to existing controller architectures (Allen Bradley Guardlogix, Siemens F-
series etc.). These differ from conventional PLC types as being suitable for use in 
safety-critical applications for which PLCs have traditionally been supplemented with 
hard-wired safety relays. For example, a Safety PLC might be used to control access 
to a robot cell with trapped-key access, or perhaps to manage the shutdown response 
to an emergency stop on a conveyor production line. Such PLCs typically have a 
restricted regular instruction set augmented with safety-specific instructions designed 
to interface with emergency stops, light screens and so forth. The flexibility that such 
systems offer has resulted in rapid growth of demand for these controllers. 

Digital and analog signals 
Digital or discrete signals behave as binary switches, yielding simply an On or Off 
signal (1 or 0, True or False, respectively). Push buttons, limit switches, and 
photoelectric sensors are examples of devices providing a discrete signal. Discrete 
signals are sent using either voltage or current, where a specific range is designated as 
On and another as Off. For example, a PLC might use 24 V DC I/O, with values 
above 22 V DC representing On, values below 2VDC representing Off, and 
intermediate values undefined. Initially, PLCs had only discrete I/O. 

Analog signals are like volume controls, with a range of values between zero and full-
scale. These are typically interpreted as integer values (counts) by the PLC, with 
various ranges of accuracy depending on the device and the number of bits available 
to store the data. As PLCs typically use 16-bit signed binary processors, the integer 
values are limited between -32,768 and +32,767. Pressure, temperature, flow, and 
weight are often represented by analog signals. Analog signals can use voltage or 



current with a magnitude proportional to the value of the process signal. For example, 
an analog 0 - 10 V input or 4-20 mA would be converted into an integer value of 0 - 
32767. 

Current inputs are less sensitive to electrical noise (i.e. from welders or electric motor 
starts) than voltage inputs. 

Example 

As an example, say a facility needs to store water in a tank. The water is drawn from 
the tank by another system, as needed, and our example system must manage the 
water level in the tank. 

Using only digital signals, the PLC has two digital inputs from float switches (Low 
Level and High Level). When the water level is above the switch it closes a contact 
and passes a signal to an input. The PLC uses a digital output to open and close the 
inlet valve into the tank. 

When the water level drops enough so that the Low Level float switch is off (down), 
the PLC will open the valve to let more water in. Once the water level rises enough so 
that the High Level switch is on (up), the PLC will shut the inlet to stop the water 
from overflowing. This rung is an example of seal-in (latching) logic. The output is 
sealed in until some condition breaks the circuit. 

|                                                             | 
|   Low Level      High Level                 Fill Valve      | 
|------[/]------|------[/]----------------------(OUT)---------| 
|               |                                             | 
|               |                                             | 
|               |                                             | 
|   Fill Valve  |                                             | 
|------[ ]------|                                             | 
|                                                             | 
|                                                             | 

An analog system might use a water pressure sensor or a load cell, and an adjustable 
(throttled) control (e.g. by a valve) of the fill of the tank. 

In this system, to avoid 'flutter' adjustments that can wear out the valve, many PLCs 
incorporate "hysteresis" which essentially creates a "deadband" of activity. A 
technician adjusts this dead band so the valve moves only for a significant change in 
rate. This will in turn minimize the motion of the valve, and reduce its wear. 

A real system might combine both approaches, using float switches and simple valves 
to prevent spills, and a rate sensor and rate valve to optimize refill rates and prevent 
water hammer. Backup and maintenance methods can make a real system very 
complicated. 

 

 



 

Flowchart for a Tank Filler PLC program  

 

 

 flowchart is shown in See A 
Flowchart for a Tank Filler for a control system for a large water tank. When a start 
button is pushed the tank will start to fill, and the flow out will be stopped. When 
full, or the stop button is pushed the outlet will open up, and the flow in will be 
stopped. In the flowchart the general flow of execution starts at the top. The first 
operation is to open the outlet valve and close the inlet valve. Next, a single decision 
block is used to wait for a button to be pushed. when the button is pushed the yes 
branch is followed and the inlet valve is opened, and the outlet valve is closed. Then 
the flow chart goes into a loop that uses two decision blocks to wait until the tank is 
full, or the stop button is pushed. If either case occurs the inlet valve is closed and 
the outlet valve is opened. The system then goes back to wait for the start button to 
be pushed again. When the controller is on the program should always be running, so 
only a start block is needed. Many beginners will neglect to put in checks for stop 
buttons. 

  
A Flowchart for a Tank Filler 
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