

Programmable logic controller

Contents
• 1 History
• 2 Development

o 2.1 Programming
• 3 Functionality
• 4 PLC topics

o 4.1 Features
o 4.2 Scan time
o 4.3 System scale
o 4.4 User interface
o 4.5 Communications
o 4.6 Programming

• 5 PLC compared with other control systems
• 6 Digital and analog signals

o 6.1 Example
• 7 Flowchart
• 8 References
• 9 Further reading

History
The PLC was invented in response to the needs of the American automotive
manufacturing industry. Programmable logic controllers were initially adopted by the
automotive industry where software revision replaced the re-wiring of hard-wired
control panels when production models changed.

Before the PLC, control, sequencing, and safety interlock logic for manufacturing
automobiles was accomplished using hundreds or thousands of relays, cam timers,
and drum sequencers and dedicated closed-loop controllers. The process for updating
such facilities for the yearly model change-over was very time consuming and
expensive, as electricians needed to individually rewire each and every relay.

Digital computers, being general-purpose programmable devices, were soon applied
to control of industrial processes. Early computers required specialist programmers,
and stringent operating environmental control for temperature, cleanliness, and power
quality. Using a general-purpose computer for process control required protecting the
computer from the plant floor conditions. An industrial control computer would have
several attributes: it would tolerate the shop-floor environment, it would support
discrete (bit-form) input and output in an easily extensible manner, it would not
require years of training to use, and it would permit its operation to be monitored. The
response time of any computer system must be fast enough to be useful for control;
the required speed varying according to the nature of the process.[1]

In 1968 GM Hydramatic (the automatic transmission division of General Motors)
issued a request for proposal for an electronic replacement for hard-wired relay
systems. The winning proposal came from Bedford Associates of Bedford,
Massachusetts. The first PLC, designated the 084 because it was Bedford Associates'
eighty-fourth project, was the result.[2] Bedford Associates started a new company
dedicated to developing, manufacturing, selling, and servicing this new product:
Modicon, which stood for MOdular DIgital CONtroller. One of the people who
worked on that project was Dick Morley, who is considered to be the "father" of the
PLC.[3] The Modicon brand was sold in 1977 to Gould Electronics, and later acquired
by German Company AEG and then by French Schneider Electric, the current owner.

One of the very first 084 models built is now on display at Modicon's headquarters in
North Andover, Massachusetts. It was presented to Modicon by GM, when the unit
was retired after nearly twenty years of uninterrupted service. Modicon used the 84
moniker at the end of its product range until the 984 made its appearance.

The automotive industry is still one of the largest users of PLCs.

Development
Early PLCs were designed to replace relay logic systems. These PLCs were
programmed in "ladder logic", which strongly resembles a schematic diagram of relay
logic. This program notation was chosen to reduce training demands for the existing
technicians. Other early PLCs used a form of instruction list programming, based on a
stack-based logic solver.

Modern PLCs can be programmed in a variety of ways, from ladder logic to more
traditional programming languages such as BASIC and C. Another method is State
Logic, a very high-level programming language designed to program PLCs based on
state transition diagrams.

Many early PLCs did not have accompanying programming terminals that were
capable of graphical representation of the logic, and so the logic was instead
represented as a series of logic expressions in some version of Boolean format, similar
to Boolean algebra. As programming terminals evolved, it became more common for
ladder logic to be used, for the aforementioned reasons and because it was a familiar
format used for electromechanical control panels. Newer formats such as State Logic
and Function Block (which is similar to the way logic is depicted when using digital
integrated logic circuits) exist, but they are still not as popular as ladder logic. A
primary reason for this is that PLCs solve the logic in a predictable and repeating
sequence, and ladder logic allows the programmer (the person writing the logic) to see
any issues with the timing of the logic sequence more easily than would be possible in
other formats.

Programming

Early PLCs, up to the mid-1980s, were programmed using proprietary programming
panels or special-purpose programming terminals, which often had dedicated function
keys representing the various logical elements of PLC programs.[2] Programs were
stored on cassette tape cartridges. Facilities for printing and documentation were very
minimal due to lack of memory capacity. The very oldest PLCs used non-volatile
magnetic core memory.

More recently, PLCs are programmed using application software on personal
computers. The computer is connected to the PLC through Ethernet, RS-232, RS-485
or RS-422 cabling. The programming software allows entry and editing of the ladder-
style logic. Generally the software provides functions for debugging and
troubleshooting the PLC software, for example, by highlighting portions of the logic
to show current status during operation or via simulation. The software will upload
and download the PLC program, for backup and restoration purposes. In some models
of programmable controller, the program is transferred from a personal computer to
the PLC through a programming board which writes the program into a removable
chip such as an EEPROM or EPROM.

Functionality
The functionality of the PLC has evolved over the years to include sequential relay
control, motion control, process control, distributed control systems and networking.
The data handling, storage, processing power and communication capabilities of some
modern PLCs are approximately equivalent to desktop computers. PLC-like
programming combined with remote I/O hardware, allow a general-purpose desktop
computer to overlap some PLCs in certain applications. Regarding the practicality of
these desktop computer based logic controllers, it is important to note that they have
not been generally accepted in heavy industry because the desktop computers run on
less stable operating systems than do PLCs, and because the desktop computer
hardware is typically not designed to the same levels of tolerance to temperature,
humidity, vibration, and longevity as the processors used in PLCs. In addition to the
hardware limitations of desktop based logic, operating systems such as Windows do
not lend themselves to deterministic logic execution, with the result that the logic may
not always respond to changes in logic state or input status with the extreme
consistency in timing as is expected from PLCs. Still, such desktop logic applications
find use in less critical situations, such as laboratory automation and use in small
facilities where the application is less demanding and critical, because they are
generally much less expensive than PLCs.

In more recent years, small products called PLRs (programmable logic relays), and
also by similar names, have become more common and accepted. These are very
much like PLCs, and are used in light industry where only a few points of I/O (i.e. a
few signals coming in from the real world and a few going out) are involved, and low
cost is desired. These small devices are typically made in a common physical size and
shape by several manufacturers, and branded by the makers of larger PLCs to fill out
their low end product range. Popular names include PICO Controller, NANO PLC,
and other names implying very small controllers. Most of these have between 8 and
12 digital inputs, 4 and 8 digital outputs, and up to 2 analog inputs. Size is usually
about 4" wide, 3" high, and 3" deep. Most such devices include a tiny postage stamp
sized LCD screen for viewing simplified ladder logic (only a very small portion of the
program being visible at a given time) and status of I/O points, and typically these
screens are accompanied by a 4-way rocker push-button plus four more separate push-
buttons, similar to the key buttons on a VCR remote control, and used to navigate and
edit the logic. Most have a small plug for connecting via RS-232 or RS-485 to a
personal computer so that programmers can use simple Windows applications for
programming instead of being forced to use the tiny LCD and push-button set for this
purpose. Unlike regular PLCs that are usually modular and greatly expandable, the
PLRs are usually not modular or expandable, but their price can be two orders of
magnitude less than a PLC and they still offer robust design and deterministic
execution of the logic.

PLC

Feat

Contr
eleme

The m
condi
input
PLCs
press
vision
cylin
arran
modu

Scan

A PL
runni
to the
from
proce
status
a fast
(say,
respo

C topics

tures

rol panel wit
ents, from le

main differen
itions (such
t/output (I/O
s read limit s
ure), and the
n. On the act
ders, magne

ngements ma
ules attached

n time

LC program i
ing. The stat
e processor,
its first instr

essor of the P
s of outputs.
t processor, b
up to 100 m

onse of the P

s

th PLC (grey
eft to right; p

nce from oth
as dust, moi
) arrangeme
switches, ana
e positions o
tuator side, P

etic relays, so
ay be built in
d to a compu

is generally
tus of physic
sometimes c
ruction rung
PLC to evalu
 This scan ti
but older PL

ms) to execut
PLC to proce

y elements in
power supply

her computer
isture, heat, c
ents. These c
alog process

of complex p
PLCs operat
olenoids, or
nto a simple P
uter network

executed rep
cal input poin
called the "I/

g down to the
uate all the r
ime may be

LCs running
te the progra
ess condition

n the center)
y, controller

rs is that PL
cold) and ha

connect the P
s variables (s
positioning s
te electric m
analog outpu
PLC, or the
that plugs in

peatedly as l
nts is copied
/O Image Ta
e last rung. I
rungs and up
a few millise
very large p

am. If the sca
ns would be t

). The unit co
, relay units

Cs are armo
ave the facili
PLC to senso
such as temp
ystems. Som

motors, pneum
uts. The inpu
PLC may ha
nto the PLC.

long as the c
d to an area o
able". The pr
It takes some
pdate the I/O
econds for a

programs cou
an time was
too slow to b

onsists of se
for in- and o

ored for seve
ity for extens
ors and actua
perature and
me use mach
matic or hydr
ut/output
ave external
.

controlled sy
of memory a
rogram is the
e time for the

O image table
a small progr
uld take muc
too long, the
be useful.

eparate
output

ere
sive
ators.

hine
raulic

I/O

ystem is
accessible
en run
e
e with the
ram or on
ch longer
e

As PLCs became more advanced, methods were developed to change the sequence of
ladder execution, and subroutines were implemented. This simplified programming
and could also be used to save scan time for high-speed processes; for example, parts
of the program used only for setting up the machine could be segregated from those
parts required to operate at higher speed.

Special-purpose I/O modules, such as timer modules or counter modules, could be
used where the scan time of the processor was too long to reliably pick up, for
example, counting pulses from a shaft encoder. The relatively slow PLC could still
interpret the counted values to control a machine, but the accumulation of pulses was
done by a dedicated module that was unaffected by the speed of the program
execution.

System scale

A small PLC will have a fixed number of connections built in for inputs and outputs.
Typically, expansions are available if the base model has insufficient I/O.

Modular PLCs have a chassis (also called a rack) into which are placed modules with
different functions. The processor and selection of I/O modules are customized for the
particular application. Several racks can be administered by a single processor, and
may have thousands of inputs and outputs. A special high speed serial I/O link is used
so that racks can be distributed away from the processor, reducing the wiring costs for
large plants.

User interface

PLCs may need to interact with people for the purpose of configuration, alarm
reporting or everyday control. A human-machine interface (HMI) is employed for this
purpose. HMIs are also referred to as man-machine interfaces (MMIs) and graphical
user interface (GUIs). A simple system may use buttons and lights to interact with the
user. Text displays are available as well as graphical touch screens. More complex
systems use programming and monitoring software installed on a computer, with the
PLC connected via a communication interface.

Communications

PLCs have built in communications ports, usually 9-pin RS-232, but optionally EIA-
485 or Ethernet. Modbus, BACnet or DF1 is usually included as one of the
communications protocols. Other options include various fieldbuses such as
DeviceNet or Profibus. Other communications protocols that may be used are listed in
the List of automation protocols.

Most modern PLCs can communicate over a network to some other system, such as a
computer running a SCADA (Supervisory Control And Data Acquisition) system or
web browser.

PLCs used in larger I/O systems may have peer-to-peer (P2P) communication
between processors. This allows separate parts of a complex process to have
individual control while allowing the subsystems to co-ordinate over the
communication link. These communication links are also often used for HMI devices
such as keypads or PC-type workstations.

Programming

Before the advent of solid-state logic circuits, logical control systems were designed and built
exclusively around electromechanical relays. Relays are far from obsolete in modern design,
but have been replaced in many of their former roles as logic-level control devices, relegated
most often to those applications demanding high current and/or high voltage switching.

Systems and processes requiring "on/off" control abound in modern commerce and industry,
but such control systems are rarely built from either electromechanical relays or discrete logic
gates. Instead, digital computers fill the need, which may be programmed to do a variety of
logical functions.

In the late 1960's an American company named Bedford Associates released a computing
device they called the MODICON. As an acronym, it meant Modular Digital Controller, and
later became the name of a company division devoted to the design, manufacture, and sale of
these special-purpose control computers. Other engineering firms developed their own
versions of this device, and it eventually came to be known in non-proprietary terms as a
PLC, or Programmable Logic Controller. The purpose of a PLC was to directly replace
electromechanical relays as logic elements, substituting instead a solid-state digital computer
with a stored program, able to emulate the interconnection of many relays to perform certain
logical tasks.

A PLC has many "input" terminals, through which it interprets "high" and "low" logical states
from sensors and switches. It also has many output terminals, through which it outputs "high"
and "low" signals to power lights, solenoids, contactors, small motors, and other devices
lending themselves to on/off control. In an effort to make PLCs easy to program, their
programming language was designed to resemble ladder logic diagrams. Thus, an industrial
electrician or electrical engineer accustomed to reading ladder logic schematics would feel
comfortable programming a PLC to perform the same control functions.

PLCs are industrial computers, and as such their input and output signals are typically 120
volts AC, just like the electromechanical control relays they were designed to replace.
Although some PLCs have the ability to input and output low-level DC voltage signals of the
magnitude used in logic gate circuits, this is the exception and not the rule.

Signal connection and programming standards vary somewhat between different models of
PLC, but they are similar enough to allow a "generic" introduction to PLC programming here.
The following illustration shows a simple PLC, as it might appear from a front view. Two screw
terminals provide connection to 120 volts AC for powering the PLC's internal circuitry, labeled
L1 and L2. Six screw terminals on the left-hand side provide connection to input devices,
each terminal representing a different input "channel" with its own "X" label. The lower-left
screw terminal is a "Common" connection, which is generally connected to L2 (neutral) of the
120 VAC power source.

Inside
an op
signa
120 V
indica

Outpu
(trans
any o
conne
on the

e the PLC hou
pto-isolator de
l to the comp

VAC power ap
ating LED on t

ut signals are
sistor, TRIAC,
f the "Y-" labe

ected to the L
e front panel o

using, connec
evice (Light-E
uter's circuitry
pplied betwee
the front pane

generated by
, or even an e
eled output te

L1 side of the
of the PLC giv

cted between
mitting Diode
y (a photo-tra

en the respect
el of the PLC

y the PLC's c
electromecha
erminals. The
120 VAC pow
ves visual ind

each input te
e) that provide
ansistor interp
tive input term
gives visual i

omputer circu
nical relay), c
"Source" term

wer source. A
dication of an

erminal and th
es an electrica
prets the LED
minal and the
indication of a

uitry activating
connecting the
minal, corresp

As with each i
"energized" o

he Common t
ally isolated "
's light) when
Common ter

an "energized

g a switching
e "Source" te
pondingly, is
nput, an indic
output:

terminal, is
high" logic
 there is

rminal. An
d" input:

device
rminal to
usually

cating LED

In this way, the PLC is able to interface with real-world devices such as switches and
solenoids.

The actual logic of the control system is established inside the PLC by means of a computer
program. This program dictates which output gets energized under which input conditions.
Although the program itself appears to be a ladder logic diagram, with switch and relay
symbols, there are no actual switch contacts or relay coils operating inside the PLC to create
the logical relationships between input and output. These are imaginary contacts and coils, if
you will. The program is entered and viewed via a personal computer connected to the PLC's
programming port.

Consider the following circuit and PLC program:

When the pushbutton switch is unactuated (unpressed), no power is sent to the X1 input of
the PLC. Following the program, which shows a normally-open X1 contact in series with a Y1
coil, no "power" will be sent to the Y1 coil. Thus, the PLC's Y1 output remains de-energized,
and the indicator lamp connected to it remains dark.

If the pushbutton switch is pressed, however, power will be sent to the PLC's X1 input. Any
and all X1 contacts appearing in the program will assume the actuated (non-normal) state, as
though they were relay contacts actuated by the energizing of a relay coil named "X1". In this
case, energizing the X1 input will cause the normally-open X1 contact will "close," sending
"power" to the Y1 coil. When the Y1 coil of the program "energizes," the real Y1 output will
become energized, lighting up the lamp connected to it:

It must be understood that the X1 contact, Y1 coil, connecting wires, and "power" appearing
in the personal computer's display are all virtual. They do not exist as real electrical
components. They exist as commands in a computer program -- a piece of software only --
that just happens to resemble a real relay schematic diagram.

Equally important to understand is that the personal computer used to display and edit the
PLC's program is not necessary for the PLC's continued operation. Once a program has been
loaded to the PLC from the personal computer, the personal computer may be unplugged
from the PLC, and the PLC will continue to follow the programmed commands. I include the
personal computer display in these illustrations for your sake only, in aiding to understand the
relationship between real-life conditions (switch closure and lamp status) and the program's
status ("power" through virtual contacts and virtual coils).

The true power and versatility of a PLC is revealed when we want to alter the behavior of a
control system. Since the PLC is a programmable device, we can alter its behavior by
changing the commands we give it, without having to reconfigure the electrical components
connected to it. For example, suppose we wanted to make this switch-and-lamp circuit
function in an inverted fashion: push the button to make the lamp turn off, and release it to
make it turn on. The "hardware" solution would require that a normally-closed pushbutton
switch be substituted for the normally-open switch currently in place. The "software" solution

is much easier: just alter the program so that contact X1 is normally-closed rather than
normally-open.

In the following illustration, we have the altered system shown in the state where the
pushbutton is unactuated (not being pressed):

In this next illustration, the switch is shown actuated (pressed):

One of the advantages of implementing logical control in software rather than in hardware is
that input signals can be re-used as many times in the program as is necessary. For example,
take the following circuit and program, designed to energize the lamp if at least two of the
three pushbutton switches are simultaneously actuated:

To build an equivalent circuit using electromechanical relays, three relays with two normally-
open contacts each would have to be used, to provide two contacts per input switch. Using a
PLC, however, we can program as many contacts as we wish for each "X" input without
adding additional hardware, since each input and each output is nothing more than a single
bit in the PLC's digital memory (either 0 or 1), and can be recalled as many times as
necessary.

Furthermore, since each output in the PLC is nothing more than a bit in its memory as well,
we can assign contacts in a PLC program "actuated" by an output (Y) status. Take for
instance this next system, a motor start-stop control circuit:

The pushbutton switch connected to input X1 serves as the "Start" switch, while the switch
connected to input X2 serves as the "Stop." Another contact in the program, named Y1, uses
the output coil status as a seal-in contact, directly, so that the motor contactor will continue to
be energized after the "Start" pushbutton switch is released. You can see the normally-closed
contact X2 appear in a colored block, showing that it is in a closed ("electrically conducting")
state.

If we were to press the "Start" button, input X1 would energize, thus "closing" the X1 contact
in the program, sending "power" to the Y1 "coil," energizing the Y1 output and applying 120
volt AC power to the real motor contactor coil. The parallel Y1 contact will also "close," thus
latching the "circuit" in an energized state:

Now, if we release the "Start" pushbutton, the normally-open X1 "contact" will return to its
"open" state, but the motor will continue to run because the Y1 seal-in "contact" continues to
provide "continuity" to "power" coil Y1, thus keeping the Y1 output energized:

To stop the motor, we must momentarily press the "Stop" pushbutton, which will energize the
X2 input and "open" the normally-closed "contact," breaking continuity to the Y1 "coil:"

When the "Stop" pushbutton is released, input X2 will de-energize, returning "contact" X2 to
its normal, "closed" state. The motor, however, will not start again until the "Start" pushbutton
is actuated, because the "seal-in" of Y1 has been lost:

An important point to make here is that fail-safe design is just as important in PLC-controlled
systems as it is in electromechanical relay-controlled systems. One should always consider
the effects of failed (open) wiring on the device or devices being controlled. In this motor
control circuit example, we have a problem: if the input wiring for X2 (the "Stop" switch) were
to fail open, there would be no way to stop the motor!

The solution to this problem is a reversal of logic between the X2 "contact" inside the PLC
program and the actual "Stop" pushbutton switch:

When the normally-closed "Stop" pushbutton switch is unactuated (not pressed), the PLC's
X2 input will be energized, thus "closing" the X2 "contact" inside the program. This allows the
motor to be started when input X1 is energized, and allows it to continue to run when the
"Start" pushbutton is no longer pressed. When the "Stop" pushbutton is actuated, input X2 will
de-energize, thus "opening" the X2 "contact" inside the PLC program and shutting off the
motor. So, we see there is no operational difference between this new design and the
previous design.

However, if the input wiring on input X2 were to fail open, X2 input would de-energize in the
same manner as when the "Stop" pushbutton is pressed. The result, then, for a wiring failure
on the X2 input is that the motor will immediately shut off. This is a safer design than the one
previously shown, where a "Stop" switch wiring failure would have resulted in an inability to
turn off the motor.

In addition to input (X) and output (Y) program elements, PLCs provide "internal" coils and
contacts with no intrinsic connection to the outside world. These are used much the same as
"control relays" (CR1, CR2, etc.) are used in standard relay circuits: to provide logic signal
inversion when necessary.

To demonstrate how one of these "internal" relays might be used, consider the following
example circuit and program, designed to emulate the function of a three-input NAND gate.

Since PLC program elements are typically designed by single letters, I will call the internal
control relay "C1" rather than "CR1" as would be customary in a relay control circuit:

In this circuit, the lamp will remain lit so long as any of the pushbuttons remain unactuated
(unpressed). To make the lamp turn off, we will have to actuate (press) all three switches, like
this:

This section on programmable logic controllers illustrates just a small sample of their
capabilities. As computers, PLCs can perform timing functions (for the equivalent of time-
delay relays), drum sequencing, and other advanced functions with far greater accuracy and
reliability than what is possible using electromechanical logic devices. Most PLCs have the
capacity for far more than six inputs and six outputs. The following photograph shows several
input and output modules of a single Allen-Bradley PLC.

With each module having sixteen "points" of either input or output, this PLC has the ability to
monitor and control dozens of devices. Fit into a control cabinet, a PLC takes up little room,
especially considering the equivalent space that would be needed by electromechanical
relays to perform the same functions:

One advantage of PLCs that simply cannot be duplicated by electromechanical relays is
remote monitoring and control via digital computer networks. Because a PLC is nothing more
than a special-purpose digital computer, it has the ability to communicate with other
computers rather easily. The following photograph shows a personal computer displaying a
graphic image of a real liquid-level process (a pumping, or "lift," station for a municipal
wastewater treatment system) controlled by a PLC. The actual pumping station is located
miles away from the personal computer display:

PLC

Allen

PLCs
proce
autom
chang
input
electr
seque
the co
contr
contr
optim
engin

For h
For e
cam t

A mi
units
input
many
appli
users
such
becau

Very
algor
Very
exam
fully
wher
runni
execu
proce

C comp

n-Bradley PL

s are well-ad
esses in man
mation system
ges to the sy
t and output
rical design
ence of oper
ost of a pack
roller design
rol systems a
mally chosen
neering charg

high volume
example, a co
timer costing

crocontrolle
will be prod

t/output hard
y sales, and w
cations are a
 alter the pro
as transit bu

use the volum

complex pr
rithms and pe

high-speed
mple, aircraft

proprietary
e the high de
ing on deskto
uting program
ess control n

pared wi

LC installed

dapted to a ra
nufacturing w
m is high rel

ystem would
devices com
is required, a
ations. PLC

kaged PLC is
. On the othe

are economic
n instead of a
ges are sprea

or very simp
onsumer dish
g only a few

er-based desi
duced and so
dware and ne
where the en
an example;
ogramming o
uses econom
mes are low

ocess contro
erformance b
or precision
flight contro
hardware m
evelopment
op-type com
ms within a

needs.[5]

ith other

in a control

ange of auto
where the co
lative to the
be expected

mpatible with
and the desig
applications

s low compa
er hand, in th
c due to the
a "generic" s
ad over thou

ple fixed aut
hwasher wo

w dollars in p

ign would be
o the develop
ecessary test
nd-user woul
millions of u
of these con
ically use PL
and the dev

ol, such as us
beyond the c

n controls ma
ols. Single-b

may be chosen
and mainten

mputers can i
version of c

r contro

panel

mation tasks
st of develop
total cost of

d during its o
h industrial p
gn problem
s are typicall
ared to the co
he case of m
lower cost o

solution, and
usands or mil

tomation tas
uld be contr

production qu

e appropriate
pment cost (
ting and certi
ld not need t
units are bui

ntrollers. How
LCs instead

velopment co

sed in the ch
capability of
ay also requi
board compu
n for very de
nance cost ca
interface wit
commercial o

ol system

s. These are
ping and ma
f the automat
operational li
pilot devices
centers on e
ly highly cus
ost of a spec

mass-produce
of the compo
d where the n
llions of unit

ks, different
rolled by an e
uantities.

e where hun
design of po
ification) can
to alter the c
ilt each year
wever, some
of custom-d

ost would be

hemical indu
f even high-p
ire customiz
uters using se
emanding co
an be suppor
th industrial
operating sy

ms

typically ind
aintaining the
tion, and wh
ife. PLCs co
 and control

expressing th
stomized sys
cific custom-
ed goods, cu
onents, which
non-recurring
ts.

t techniques
electromech

dreds or tho
ower supplie
n be spread
ontrol. Auto
, and very fe

e specialty ve
designed con
 uneconomic

ustry, may re
performance

zed solutions
emi-customi
ontrol applic
rted. "Soft P
I/O hardwar
stems adapte

dustrial
e
here
ontain
ls; little
he desired
stems so
-built

ustomized
h can be
g

are used.
hanical

usands of
es,
over

omotive
ew end-
ehicles

ntrols,
c.[5]

equire
e PLCs.
s; for
ized or

cations
LCs"
re while
ed for

Programmable controllers are widely used in motion control, positioning control and
torque control. Some manufacturers produce motion control units to be integrated
with PLC so that G-code (involving a CNC machine) can be used to instruct machine
movements.[citation needed]

PLCs may include logic for single-variable feedback analog control loop, a
"proportional, integral, derivative" or "PID controller". A PID loop could be used to
control the temperature of a manufacturing process, for example. Historically PLCs
were usually configured with only a few analog control loops; where processes
required hundreds or thousands of loops, a distributed control system (DCS) would
instead be used. As PLCs have become more powerful, the boundary between DCS
and PLC applications has become less distinct.

PLCs have similar functionality as Remote Terminal Units. An RTU, however,
usually does not support control algorithms or control loops. As hardware rapidly
becomes more powerful and cheaper, RTUs, PLCs and DCSs are increasingly
beginning to overlap in responsibilities, and many vendors sell RTUs with PLC-like
features and vice versa. The industry has standardized on the IEC 61131-3 functional
block language for creating programs to run on RTUs and PLCs, although nearly all
vendors also offer proprietary alternatives and associated development environments.

In recent years "Safety" PLCs have started to become popular, either as standalone
models (Pilz PNOZ Multi, Sick etc.) or as functionality and safety-rated hardware
added to existing controller architectures (Allen Bradley Guardlogix, Siemens F-
series etc.). These differ from conventional PLC types as being suitable for use in
safety-critical applications for which PLCs have traditionally been supplemented with
hard-wired safety relays. For example, a Safety PLC might be used to control access
to a robot cell with trapped-key access, or perhaps to manage the shutdown response
to an emergency stop on a conveyor production line. Such PLCs typically have a
restricted regular instruction set augmented with safety-specific instructions designed
to interface with emergency stops, light screens and so forth. The flexibility that such
systems offer has resulted in rapid growth of demand for these controllers.

Digital and analog signals
Digital or discrete signals behave as binary switches, yielding simply an On or Off
signal (1 or 0, True or False, respectively). Push buttons, limit switches, and
photoelectric sensors are examples of devices providing a discrete signal. Discrete
signals are sent using either voltage or current, where a specific range is designated as
On and another as Off. For example, a PLC might use 24 V DC I/O, with values
above 22 V DC representing On, values below 2VDC representing Off, and
intermediate values undefined. Initially, PLCs had only discrete I/O.

Analog signals are like volume controls, with a range of values between zero and full-
scale. These are typically interpreted as integer values (counts) by the PLC, with
various ranges of accuracy depending on the device and the number of bits available
to store the data. As PLCs typically use 16-bit signed binary processors, the integer
values are limited between -32,768 and +32,767. Pressure, temperature, flow, and
weight are often represented by analog signals. Analog signals can use voltage or

current with a magnitude proportional to the value of the process signal. For example,
an analog 0 - 10 V input or 4-20 mA would be converted into an integer value of 0 -
32767.

Current inputs are less sensitive to electrical noise (i.e. from welders or electric motor
starts) than voltage inputs.

Example

As an example, say a facility needs to store water in a tank. The water is drawn from
the tank by another system, as needed, and our example system must manage the
water level in the tank.

Using only digital signals, the PLC has two digital inputs from float switches (Low
Level and High Level). When the water level is above the switch it closes a contact
and passes a signal to an input. The PLC uses a digital output to open and close the
inlet valve into the tank.

When the water level drops enough so that the Low Level float switch is off (down),
the PLC will open the valve to let more water in. Once the water level rises enough so
that the High Level switch is on (up), the PLC will shut the inlet to stop the water
from overflowing. This rung is an example of seal-in (latching) logic. The output is
sealed in until some condition breaks the circuit.

| |
| Low Level High Level Fill Valve |
------[/]------	------[/]----------------------(OUT)---------
Fill Valve	
------[]------	

An analog system might use a water pressure sensor or a load cell, and an adjustable
(throttled) control (e.g. by a valve) of the fill of the tank.

In this system, to avoid 'flutter' adjustments that can wear out the valve, many PLCs
incorporate "hysteresis" which essentially creates a "deadband" of activity. A
technician adjusts this dead band so the valve moves only for a significant change in
rate. This will in turn minimize the motion of the valve, and reduce its wear.

A real system might combine both approaches, using float switches and simple valves
to prevent spills, and a rate sensor and rate valve to optimize refill rates and prevent
water hammer. Backup and maintenance methods can make a real system very
complicated.

Flowchart for a Tank Filler PLC program

 flowchart is shown in See A
Flowchart for a Tank Filler for a control system for a large water tank. When a start
button is pushed the tank will start to fill, and the flow out will be stopped. When
full, or the stop button is pushed the outlet will open up, and the flow in will be
stopped. In the flowchart the general flow of execution starts at the top. The first
operation is to open the outlet valve and close the inlet valve. Next, a single decision
block is used to wait for a button to be pushed. when the button is pushed the yes
branch is followed and the inlet valve is opened, and the outlet valve is closed. Then
the flow chart goes into a loop that uses two decision blocks to wait until the tank is
full, or the stop button is pushed. If either case occurs the inlet valve is closed and
the outlet valve is opened. The system then goes back to wait for the start button to
be pushed again. When the controller is on the program should always be running, so
only a start block is needed. Many beginners will neglect to put in checks for stop
buttons.

A Flowchart for a Tank Filler

References
1. ^ E. A. Parr, Industrial Control Handbook, Industrial Press Inc., 1999 ISBN

0831130857
2. ^ a b M. A. Laughton, D. J. Warne (ed), Electrical Engineer's Reference book, 16th

edition,Newnes, 2003 Chapter 16 Programmable Controller
3. ^ "The father of invention: Dick Morley looks back on the 40th anniversary of the

PLC". Manufacturing Automation. 12 September 2008.
http://www.automationmag.com/programable-control/features/the-father-of-
invention-dick-morley-looks-back-on-the-40th-anniversary-of-the-plc.html.

4. ^ a b W. Bolton, Programmable Logic Controllers, Fifth Edition, Newnes, 2009
ISBN 978-1-85617-751-1, Chapter 1

5. ^ a b Gregory K. McMillan, Douglas M. Considine (ed), Process/Industrial
Instruments and Controls Handbook Fifth Edition, McGraw-Hill, 1999 ISBN 0-07-
012582-1 Section 3 Controllers

Further reading
• Daniel Kandray, Programmable Automation Technologies, Industrial Press, 2010

ISBN 978-0-8311-3346-7, Chapter 8 Introduction to Programmable Logic
Controllers

