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Abstract 

Several micromechanical theories exist that can be used to predict composite material 

properties. Short fibre composite micromechanical models have also been used to predict 

nanocomposite modulus. However, the reasons for selecting particular models were not 

provided. Also, the sensitivity of the micromechanical models had not been considered. 

There are few studies that predict damping for composite materials using 

micromechanical models and they have never before been used to predict nanocomposite 

damping over a wide temperature range.  

In this work, to find a better micromechanical model for nanocomposite materials, 

predictions from the theories have been compared with three previous experimental 

nanocomposite works. It was observed that the Lavengood theory showed the closest 

results to the experimental results, as a result of its suitability for low volume fraction 

reinforcement of fibres in the composite. The sensitivity of fibres aspect ratio was 

considered too, it was found that Lavengood theory exhibit less sensitivity that others. 

Keywords: Nanocomposites, Micromechanic theories, Composite Materials, 

Nanotechnology.  

 

 

 



1. Introduction 

As the use of composite materials has increased, the need to predict performance more 

accurately has resulted in the development of many micromechanical models.  These 

theories are primarily used to assess and predict analytically the elastic stiffness of 

different composite materials considering their microstructure [1]. Models have been 

developed that deal with various types of fibre reinforcement including long fibres, 

unidirectional and random short fibre. However, the suitability of such models for 

predicting the properties of nanocomposites is uncertain, as the micromechanical theories 

assume perfect bonding between fibre and matrix while in reality the level of adhesion 

between  the matrix and nanoscale reinfocement is not well understood. The other reason 

is related to the high aspect ratio for fibres in a nanocomposite compared to the fibres in 

composite materials. In addition, the suitability of micromechanical theories to predict 

modulus as temperature changes is not known.  

A few studies have been done on the suitability of micromechanical theories to predict 

the damping of composite materials. Shokrieh et al [2] compared the experimental results 

of glass fibre/epoxy with micromechanical theories at room temperature. They found 

good agreement between experimental results with the Halpin-Tsai model. However, 

there is uncertainty about the suitability of micromechanical models to predict the 

composite and nancocomposite damping, especially as temperature changes. 

 In this work, several micromechanical theories are presented and used to predict the 

longitudinal Young’s modulus and damping for the nanocomposites and composite 

materials at different volume fractions and temperature range. 

2. Continuous fibre reinforced matrix 

“Continuous fibres” means fibres that extend over the entire dimension of a part without 

a break or interruption. However, there are different theories for the limit of aspect ratio 

between continuous and short discontinuous fibres [3, 4]. For a matrix reinforced with 



long and straight fibres, two models are commonly used depending on the orientation of 

the load to the fibres.  

2.1 The Rule of Mixtures: 

This model is used to calculate mechanical properties, such as Young’s modulus, thermal 

expansion and density for composites reinforced with unidirectional continuous fibres 

when the load direction is parallel to the fibre direction. It assumes no slip and perfect 

fibre-matrix bonding.  This model is of one dimension; therefore it neglects the Poisson 

ratio of the composite content [5,6]. The modulus formula for the rule-of-mixtures is: 

 𝐸𝑐 = 𝐸𝑓 𝑣𝑓 + 𝐸𝑚𝑣𝑚 

 

𝑣𝑚=1-𝑣𝑓 
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where, 𝐸c is the Young’s modulus of the composite, 𝐸𝑓 is the Young’s modulus of the 

fibre, 𝐸𝑚 is the Young’s modulus of the matrix, 𝑣𝑓 is the volume fraction of the fibre and 

𝑣𝑚 is the volume fraction of the matrix. 

2.2 Reuss model: 

This model is used to find the transverse modulus for composites reinforced with 

unidirectional continuous fibre. It is used when the loading direction is perpendicular to 

the fibres and assumes no slip between fibre and matrix [6, 7]. The formula for the 

modulus of the composite is: 

 1
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3. Short fibre reinforced matrix 

A short fibre composite involves discontinuous fibres embedded in a matrix. The fibres 

can have either random orientation or be aligned in a particular direction. 



3.1 Aligned short fibre composite 

To find the Young’s modulus of aligned short fibres in a composite, the following 

micromechanical theories are used: 

3.1.1 Shear-Lag Model 

Shear lag theory was originally proposed by Cox in 1952. Cox’s analysis was relatively 

simple, assuming that stress transfer between fibre and matrix is entirely due to matrix 

shear. This method is commonly used in micromechanics models for oriented short fibre 

composites. It is often used to predict the elastic longitudinal modulus E11 for composite 

materials fully bonded between the fibre and the matrix. Also, the stress transfer through 

the fibre ends was neglecte[8, 9].  

Cox suggested a one-dimensional equation to explain the stress transfer between the 

matrix and the fibre. So, the model considers a single fibre of length 𝑙 and radius 𝑟𝑓 

encapsulated in a concentric cylindrical shell of matrix having radius R. The following 

expression is obtained for the longitudinal modulus: 

 E11 = η1vfEf + (1 − vf)Em 3 
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Here, 𝐸𝑓 and 𝐸𝑚 are the moduli of the fibre and the matrix, respectively. 𝐺𝑚 is the shear 

modulus of the matrix and 𝜂1 is the length-dependent efficiency factor. For Cox’s model, 

𝐾𝑅 is a constant and is equal to the value 3.628. 

3.1.2 Halpin-Tsai Equations 

The Halpin-Tsai equations are based on the self-consistent micromechanics method, 

which assumes an effective modulus for the matrix and perfect bonding between matrix 

and fibre. Also, they assume that both of the inclusion and the medium are homogeneous 

and elastic, and the fibre behaves as if surrounded by a cylinder of pure and 

homogeneous matrix. The Halpin-Tsai equations are used to calculate the longitudinal 

and transverse modulus and strength of unidirectional short fibre composites, and 

transverse mechanical properties of long fibre reinforced composites [10, 11].  

The Halpin Tsai model demonstrates that the geometry of the reinforcement has 

significant effect on the composite stiffness [12]. It is equation can be expressed in a 

common form: 

 𝑝

𝑝𝑚

=
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1 − 𝜂𝑣𝑓
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where, 

              𝜂 =

𝑝𝑓

𝑝𝑚
− 1

𝑝𝑓

𝑝𝑚
+ 𝜉

 

where, 𝑝 represents any one of the composite moduli, such as  

𝐸11 (longitudinal modulus),  𝐸22 (transverse modulus which is perpendicular to the fibre 

direction). The corresponding moduli of the fibre and the matrix are 𝑝𝑓 and 

𝑝𝑚 respectively, while 𝜉 is a parameter that depends on the particular elastic property 

being considered. It expressed in the combination of differences in Poisson ratio’s and 

elastic constants [12, 13].  



For the longitudinal modulus 𝜉 = 2𝑙/𝑑. 

For the lateral modulus  𝜉=2.  

The Halpin-Tsai equations are known provide reliable predictions at low volume 

fractions. It has also been noted that they sometimes under-predict stiffness at high 

volume fractions. 

3.1.3 Comparison between Shear Lag and Halpin-Tsai models 

To find the Young’s modulus for a nanocomposite material by both theories of shear lag 

and Halpin-Tsai, a composite material of properties as shown in Table 1 was used for the 

calculations. The properties were assumed according to data from the M-RECT project. 

The Young’s modulus at different volume fractions for aligned short fibre composites 

were predicted using both shear lag and Halpin-Tsai models, as shown in Figure 1. 

 

Table 1: Composite constituents mechanical properties. 

Material Young’s 

modulus, GPa 

Shear 

modulus, 

GPa 

Poisson 

ratio 

Diameter, 

nm 

Length, 

µm 

CNT 1000 n/a 0.2 20 0.5 

PEEK 3.9 1.9 0.4 n/a n/a 

 



 

Figure 1: Young’s modulus for aligned CNT-PEEK nanocomposites. 

 

It can be seen that the longitudinal modulus predicted by the shear lag model is higher 

than that predicted by Halpin-Tsai and the difference between them increases with 

volume fraction. The transverse modulus predicted by Halpin-Tsai is significantly lower 

than the longitudinal modulus. 

3.2 Random short fibre composite 

Several micromechanical models have been developed to estimate the Young’s modulus 

for a random orientation of short fibres in a matrix. These theories are derived from the 

micromechanical theories used for long fibre and aligned short fibre composites. 

3.2.1 Lavengood and Goettler model 

Lavengood and Goettler modified the Halpin-Tsai model by developing a technique to 

compute the average elastic modulus for short fibre composite  by integrating over the 

fibre inclination distribution[14]. This theory is suitable for investigating the stiffness in 

two and three-dimensional random fibre distributions. It requires fibres to be relatively 



long and the volume fraction to be low. Also, it is assumed that all the elements in the 

composite are under the same values of stress and strain. They compared their theory 

with experimental results for an epoxy composite and achieved agreement [4]. They 

derived the following equation [14]: 

 
E3d = (

1

5
) E11 + (

4

5
) E22 
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where 𝐸11 and 𝐸22 are longitudinal and transverse Young’s modulus calculated using 

Halpin-Tsai with unidirectional orientation and the same fibre aspect ratio and volume 

fraction.  

3.2.2 Fibre Density Function -Pan’s Model 

Pan developed a new approach to predict the elastic constants of randomly oriented fibre 

composites. His idea was based on constructing a relation between fibre volume fraction 

and area fraction for random fibres through using fibre orientation. For that purpose, he 

developed a density function to describe the fibre orientation through two angles in a 

curvilinear coordinate system. His theory is dependent on the composite material content 

properties only and neglects the geometry effect of the composite constituents. He started 

with the rule-of-mixtures for a unidirectional composite to calculate composite modulus  

[15, 16].  

For the case of three-dimensional random fibre orientation, the tensile modulus is given 

by: 

 Ec = Ef

vf

2π
+ Em(1 −

vf

2π
) 6 

 

Pan’s model has no restriction on the fibre volume fraction. Also, this theory can be 

applied to cases other than random fibre orientation as long as the fibre orientation 

density function is available.  



3.2.3 Krenchel’s rule of mixture 

Krenchel modified the rule-of-mixtures to find the Young’s modulus of discontinuous 

random distribution of fibres reinforced composites. He used an efficiency factor for 

orientation to predict the orientation effect of the fibres. He also used a fibre length factor 

to be suitable for short fibre composites [17, 18]. The general formula for this theory is as 

below: 

 𝐸𝑐 = (𝜂𝑜𝜂1𝐸𝑓 − 𝐸𝑚)𝑣𝑓 + 𝐸𝑚 7 

 

 𝜂𝑜 = 𝑎𝑛𝑐𝑜𝑠4(𝜃) 8 

where 𝑎𝑛 is proportional to total fibre content, 𝜃  is angle of the fibre, 𝜂𝑜is the orientation 

factor, and 𝜂1the length efficiency factor. 

Also  𝜂1  approaches 1 for  𝑙 𝑑⁄ >10, and 𝜂0 =1/5 for randomly oriented fibre. 

4 Comparison between conventional micromechanical theories for random fibre 

composite and previous nanocomposite experimental results 

In this section, the experimental results of composite materials of carbon fibre/PEEK and 

the experimental results of three different published studies on random carbon nanotube 

reinforced composites are compared with the theoretical micromechanical models for 

random fibre composites. This comparison is necessary to find suitable micromechanical 

theory for the nanocomposites and composite material. So, the classical micromechanical 

theories are compared with the following experimental results: 

4.1 Nanocomposite of SWCNT/PEEK 

In this previous study [17], the dispersion of SWCNTs that was used to reinforce PEEK 

was enhanced by functionalizing CNTs with polysulfones to increase the bonding 

between composite contents. To find the mechanical properties of the composite, tensile 



testing was carried out at room temperature with speed 1mm/min for specimens of dog 

bone shape (Type V) and according to UNE-EN ISO 527-1 standard. The nanocomposite 

constituents’ properties are shown in Table . 

Table 2: Properties of constituents for the nanocomposite material [7]. 

Material Young’s 

modulus, GPa 

Poisson’s 

ratio 

Diameter, nm Length, µm 

SWCNT 1000 0.2 1 0.1 

PEEK 4.1 0.4 n/a n/a 

 

         

  Figure 2: Young’s modulus of composite of CNT/ PEEK with changing nanotube 

content. 

The same properties of the nanocomposite constituents for the specimen  in experimental 

work [17] were used in the classical micromechanical theories to obtain Young’s 

modulus results at different fibre content, which are shown in Figure 2. 



It can be noticed that the Young’s modulus of nanocomposite increased slightly with 

increasing fibre content for all micromechanics theories. Also, in comparison between the 

experimental results with the theoretical models, the Lavengood three-dimensional theory 

gives the best fit. In addition, Pan model and Krenchel are close to the experimental 

results, especially at low fibre content. The reason of that belongs to the suitability of 

Lavengood for low fibre content in composite and Pan considered the effect of efficiency 

density function for the fibres. 

4.2  Nanocomposite of multi-walled carbon nanotube/polypropylene 

In this previous experimental study [19], MWCNT/polypropylene nanocomposite 

specimens were produced at different fibre contents. Also, to produce homogeneous 

specimen, the packing pressure, mould temperature and melting temperature were 

controlled. 

The properties of the constituents of the composite are shown in Table . 

Table 3: Nanocomposite material constituents (CNT/polypropylene) [19]. 

Material Young’s modulus, 

GPa 

Poisson’s 

ratio 

Diameter, nm Length, µm 

MWCNT 1200 0.2 20 0.5 

Polypropylene 0.6 0.42 n/a n/a 

 

The experimental results of the Young’s modulus as a function of CNT content for 

different CNT /polypropylene composites is shown in Figure 3. The same properties of 

the fibre and the matrix of the specimen in the experimental test were applied to the 

theories of short fibres in composite. 

 



                           

Figure 3: Young’s modulus of CNT /polypropylene with changing nanotube content. 

The results show that the experimental Young’s modulus values of the composite fit with 

the Lavengood theory. The results of both of Pan theory and Krenchel theory are far from 

the experimental results as the Lavengood model is derived to be suitable for low fibre 

content. 

4.3 Nanocomposite of MWCNT/Epoxy 

In this previous study [20], MWCNT and epoxy were mixed by an ultrasonic process to 

get a good dispersion of the constituents. By this method, a uniform dispersion of the 

fibres was observed.  

The composite mixtures were cured at 170 °C for 4 hours in a convection oven. The 

prepared specimens were tested in flexure using a 10 kN servo hydraulic machine. The 

machine worked under displacement control with a crosshead speed of 2 mm/min at 

room temperature. The properties of the constituents composite are as in Table .  

Table 4: Nanocomposite material constituent’s properties (CNT/Epoxy) [20]. 

Material Young’s 

modulus, GPa 

Shear 

modulus, 

Poisson’s 

ratio 

Diameter, nm Length, µm 



GPa 

MWCNT 1000 n/a 0.2 40 3 

Epoxy 2.46 1 0.25 n/a n/a 

Comparison between the micromechanical theories and experimental results are shown in 

Figure 4. 

            

Figure 4:  Young’s modulus of MWCNT/Epoxy with increasing volume fraction of 

nanotubes. 

It can be seen that the Lavengood model fits the experimental results best, especially at 

low fibre content. There are some difference between experiment results with both Pan 

and Krenchel and this difference increases with rising fibre content proportionally. 

These results indicate that both Krenchel and Pan model are not suitable for 

nanocomposites. However, the Lavengood theory gives best fit for nanocomposite 

materials, as it was derived to be suitable for composite with low volume fraction. 



5 Sensitivity of micromechanical theories 

From the micromechanical theories, it can be observed that the theories are dependent on 

different properties of composite material contents such as modulus or fibre aspect ratio.  

To find the influence of fibre aspect ratio on modulus, the micromechanical theories for 

random fibre composite materials were compared at different fibre aspect ratio (for the 

composite defined in Table 1. Results are shown in Figure 5. 

 

                        

Figure 5: Effect of fibre aspect ratio on modulus of CNT-PEEK nanocomposite contain 

0.5% 𝑣𝑓 of CNT. 

It can be seen that fibre aspect ratio has influence on Lavengood theory only. However, it 

does not have effect on either Pan or  Krenchel theories as they depend on the composite 

material constituents moduli and fibre content only. This is because the Lavengood 

model was derived from Halpin-Tsai that is fibre geometry dependent. However, 

Krenchel and Pan model were derived from rule-of-mixture and they neglect the effect of 

fibre geometry.  



The Young’s modulus for composite material was found at different fibre modulus to 

clarify micromechanical theories sensitivity with fibre modulus. The results are shown in 

Figure 6. 

                        

Figure 6:  Effect of fibre modulus on modulus of  CNT-PEEK nanocomposite contain 

0.5%  

𝑣𝑓 of CNT.  

It can be observed that all the theories are affected by fibre modulus change differently. 

So, the fibre modulus has higher effect on both Pan and Krenchel. However, it’s effect on 

Lavengood theory is only slight. 

6 Conclusion 

From the comparison between three experimenta; theories with exists micromechanical 

theories, it was concluded that Lavengood theory is giving best fit to the experimental 

results.  

It was found also micromechanical theories are sensitive to properties, such as fibre 

aspect ratio and fibre modulus. Lavengood model shows slight sensitivity to fibre aspect 

ratio but Krenchel and Pan model do not. Also, it was noticed that all mechanical theories 



were affected by changes in fibre modulus differently. Krenchel was affected more than 

others and Lavengood recorded less sensitivity. 
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