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Abstract. Since the first application of fuzzy logic in the field of control engineering, it has 

been extensively employed in controlling a wide range of applications. The human knowledge 

on controlling complex and non-linear processes can be incorporated into a controller in the 

form of linguistic terms. However, with the lack of analytical design study it is becoming more 

difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that 

can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is 

not always easy to find the relation between the type of membership functions or rule-base and 

the controller performance. This study proposes a new systematic auto-tuning algorithm to fine 

tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several 

second order systems. The relationship between the closed-loop response and the controller 

parameters is analysed to devise an auto-tuning method. The results show that the proposed 

method is highly effective and produces zero overshoot with enhanced transient response. In 

addition, the robustness of the controller is investigated in the case of parameter changes and 
the results show a satisfactory performance.  

1.  Introduction  

Since the first application of the fuzzy logic [1] in the field of control engineering field [2], an ever 

increasing employment of fuzzy logic controllers have been reported [3, 4]. They have been 

successfully applied in industrial processes and in some cases outperform conventional proportional-

integral-derivative (PID) controllers [5, 6], in particular when the controlled system is complex or non-

linear, as this is the case in many process control systems [7-9]. 

However the lack of a systematic method to design and tune these controllers may curtail their 

applications [10-12]. In general, the design of fuzzy logic controller involves three stages [12-14]. 

Firstly, the rule-base is constructed by translating the experience of a skilled human operator on 

controlling a plant into linguistic terms. Secondly, appropriate membership functions are selected. In 

final stage, the scaling gains of the controller are determined. To achieve better performance the rule-

base, membership function parameters or the scaling gains are adjusted via trail-error-method or using 

optimization tool techniques such as: Genetic Algorithms (GA) [15], Ant Colony Optimization 

algorithm (ACO) [16], Shuffled Frog Leaping Algorithm (SFLA) [17] and Bees Algorithm (BA) [18].  

The trial–and-error method is very simple and straightforward, but it is a tedious and a time-

consuming task [19], particularly when it is carried out on-line. Therefore, the technique is not always 

practical. In the second method, although these tools  are powerful and their successes have been 

proved, they are computationally expensive [20]. Because they are population-based algorithms, a 
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considerable number of solutions are generated; individuals of these generations are needed to be 

tested for their fitness functions. Additionally, some individuals cannot be tested in real-time and 

safety-critical applications; therefore, they are best suited for simulation based designs, where the 

plant transfer function is available.  

Furthermore, there are other reasons that make the tuning process of fuzzy logic controllers more 

complex. It is difficult to find the relation between selecting membership function type or rule base, 

and the controller performance such as better rise time or less overshoot. In addition, unlike 

conventional controllers, fuzzy logic controllers have several parameters that can be adjusted [21], 

such as membership function shape, rules and scaling gains. Furthermore, there is no general rule of 

tuning these parameters. However, some techniques applied in tuning conventional controllers can still 

be utilised to some extent [12]. 

As in conventional PID controllers, there are various structures such as: fuzzy-proportional (FP), 

fuzzy-proportional-derivative (FPD), fuzzy-proportional-integral (FPI) or fuzzy-incremental (FInc) 

and fuzzy-proportional-integral-derivative (FPID) [13, 22-24]. Even for FPID controller, different 

structures have been proposed. A normal FPID with three inputs (error, change in error and integral 

error) has been proposed and implemented [24]. Although the controller has a simple structure, the 

construction of a three-dimensional rule-base becomes more difficult as the number of rules increases 

with the increasing number of inputs [13, 25]. Furthermore, constructing rules based on integral of 

error is rather difficult [13]. 

To overcome these limitations parallel structure (FPI+FPD) [25] and FPD+I [13] have been 

proposed. A Parallel structure which is a combination of FPI and FPD controllers has two inputs, 

resulting in a two-dimensional rule-base. Additionally, it has the basic properties of a general PID 

controller, but at the same time more computational time is required to compute the controller output 

as there are two fuzzy logic controllers in the structure.  The FPD+I is constructed by combining a 

crisp integral action with FPD controller, hence the rule-base is two-dimensional and the controller has 

the merits of a general PID controller. Further configurations have been found in the literature such as: 

FPID with incremental output [26], rule coupled FPI+FPD [26], rule de-coupled FPID [26], FP+I+D 

[23], and FPI+D [23] controllers. 

In this paper, an auto-tuning algorithm is designed to tune a fuzzy PID controller. The controller is 

applied to different second order systems. Initially, the controller gains are fixed and then 

automatically tuned to achieve the best possible performance. The results show that the proposed 

method is highly effective and produces zero overshoot with enhanced transient response. In addition, 

the robustness of the controller is investigated in the case of system parameter changes and the results 

show a satisfactory performance.  

The remainder of this paper is organised as follows: section 2 presents an overview of the fuzzy 

logic controller structure and the fuzzy PID simulation design model. The auto-tuning algorithm is 

illustrated in section 3. Evaluation and simulation results are shown in section 4. Finally, some 

conclusions are drawn in section 5. 

2.  Controller design  structure 

In this section, detailed structure of the fuzzy logic controller and the simulation model are given.  

2.1.  Fuzzy PD+I controller structure 

The Fuzzy PD+I controller reported in [13] is shown in figure 1. It was adopted as the controller in 

this paper; therefore its structure is illustrated in some details.  



 

 

 

 

 

 

 

Figure 1. Fuzzy PD+I controller (FPD+I). 

The controller consists of a normal FPD controller with added integral action; therefore it is known 

as FPD+I controller. The FPD controller action depends on the error (E) and the change of error (CE). 

The integral of error (IE) is then added to the output of this controller (cu) to form the FPD+I 

controller. The controller has the following scaling gains: gain of the error (GE), gain of the change of 

error (GCE), gain of the integral of error (GIE) and the output gain (GU). Signals are represented by 

lower case symbols before gains and upper case symbols after gains. These gains can be fixed or 

adjusted to achieve the best possible performance. The gains GE, GCE and GIE correspond to the 

proportional, derivative and integral gains in conventional PID controller respectively. 

2.1.1.  Fuzzification. To represent the values of inputs (E and CE) and output (cu), five symmetric 

triangle shape membership functions (except two trapezoids at the extreme ends for E and CE) with 

50% of overlap were chosen [12, 13]. Although the choice of membership function shape and width is 

subjective, triangular shapes were chosen, because they are most popular and convenient [10, 12]. The 

interval of [-1, 1] was used for the universes of discourse of the input variables, while [-2, 2] was used 

for the output variable. The output universe of discourse is addition of the input universes; this is to 

achieve an approximate conventional PD controller which makes the controller tuning process easier 

[13]. 

The linguistic descriptions of the input and output membership functions are negative large (NL), 

negative small (NS), zero (ZE), positive small (PS) and positive large (PL). These are shown in figure 

2 and figure 3 respectively.  

 

 

 

 

 

Figure 2. Error and change of error 

membership functions. 

 
Figure 3. Output membership functions. 

2.1.2 Rule-base. The fuzzy PD rule-base is a mapping between the inputs and the output; it contains 

normal heuristic control rules of controlling a plant. A sample of the rules has the following form:  

 

If error is PL and change of error is PL, then output is PL 

 
The rule implies that if the error is positive large (measured output far away from the set point) and 

the change of error is positive large, then the control signal should be positive large to return back the 



 

 

 

 

 

 

output near the setpoint.  As there are 5 linguistic variables for each input, 25 rules were created, table 

1 shows the rules.  

 

Table 1. Fuzzy PD+I controller (FPD+I). 

Controller 

Output (cu) 

Change of error (CE) 

NL NS ZE PS PL 

Error 

(E) 

NL NL NL NS NS ZE 

NS NL NS NS ZE PS 

ZE NS NS ZE PS PS 

PS NS ZE PS PS PL 

PL ZE PS PS PL PL 

2.1.3 Defuzzification. The minimum (Min) operator was selected as an implication method, and the 

most popular and standard method of defuzzification process known as centre of gravity (CoG) was 

selected.  

2.2.  Fuzzy PD+I Controller Simulation Design Model 

The fuzzy PD+I controller in a closed-loop feedback control system is shown in figure 4. The model 

was primarily comprised of the controller and a plant block. The error signal (e) was obtained from the 

difference between the setpoint (r) and the measured plant output (y). The change of error signal and 

the integral of error were produced by passing the signals through derivative and integral blocks 

respectively. A scope was used to show the closed-loop and the open-loop responses.  

The closed-loop characteristics of the system were shown in the term of: maximum percentage 

overshoot (Mp), rise time (tr) and settling time (ts). A fixed-size (0.01 second) sampling interval was 

chosen. 

 

Figure 4. Simulink model of the Fuzzy PD+I Controller. 

3.  The auto-tune algorithm 

The auto-tune algorithm was comprised of two layers. The  basic- layer was the Fuzzy PD+I 

controller, while an upper-layer  was added to provide the capabilities of online identification, 



 

 

 

 

 

 

adaptation and auto-tuning to the basic-layer controller by determining appropriate values of the 

controller gains based on the evaluation of the system performance. Additionally, it has the ability to 

monitor the performance of the system and to guarantee the stability.  

The details of the algorithm can be summarised as follows. First, a closed-loop test on the system is 

performed by applying the fuzzy PD+I controller. The controller gains are set to their default values 

(one). The output is bounded and the overshoot is not allowed to exceed 100%, where the system 

becomes unstable. Secondly, if the response exhibits an overshoot with amplitude higher than 1%, the 

overshoot is measured and the values of GU and GIE are calculated as follows:  

 

 

                                                                             GU = Mp (1) 

                                                                             GIE = 1 / (2 * Mp) (2) 

 

 

Where Mp is the maximum percentage overshoot. This significantly reduces the overshoot. The 

gains are kept unchanged when the overshoot is less than 1%. Then, to improve the rise-time, the 

value of GCE is decreased. Finally, if the system performance is not satisfactory the value of GIE is 

increased. The last two steps are performed in an iterative base and the integrated square error (ISE) 

and the maximum percentage overshoot (Mp) were chosen to measure the performance of the 

controller.  

The black diagram and the flowchart of the auto-tune algorithm are shown in figure 5 and figure 6 

respectively. 

 

 

 
 

Figure 5. The block diagram of the auto-tune algorithm. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The flowchart of the auto-tune algorithm. 

4.  Evaluation of the auto-tuning algorithm 

4.1.  Transfer Function Model 

In order to evaluate the algorithm and to cover a wide range of systems, several standard second order 

systems with different characteristics were simulated.  

Many real-time applications exhibit oscillation and overshoot in their step responses, these 

characteristics can be modelled using a second order system [27, 28]. Furthermore, this will help 

understand the response of higher order systems. Consider the standard second order transfer function 

[29, 30] in equation (3). 

 

(3) 

Yes 

No 

Yes 

Yes 

No 

No 

A closed-loop test is performed by applying the Fuzzy PD+I controller with fixed gains.  

 

Start 

Is  
Mp > 1% 

Is tr 

satisfactory? Decrease GCE 

Is system 

performance 

satisfactory? 

End 

Measure the overshoot (Mp) and set the gains 

as follows: GU = Mp, GIE = 1 / (2 * Mp) 

 

Increase GIE 



 

 

 

 

 

 

Where  is the gain,  (zeta) is the damping ratio and n is the natural frequency. The system has 

different responses depending on the location of poles. The poles of equation (3) are the roots of the 

denominator and can be determined as: 

                                               p1, p2-n ± √ ²n (4) 

The value of determines whether the poles are real or complex conjugate. From equation (3) 

suppose = 1 and n = 1, depending on the value of there are five distinct cases as following: 

 If ≥ 1, the poles are real: 

 = 1, critically damped system, denoted as case 1. 

 >1, overdamped system, denoted as case 2. 

 If 0 ≤ 1, the poles are complex conjugate:  

 = 0, undamped (marginally stable), denoted as case 4.   

 =0.5, underdamped system, denoted as case 3. 

 If 0, unstable system, denoted as case 5. 

Different system transfer functions according to the value of  are shown in table 2 and the step 

responses of these systems are shown in figure 7. 

Table 2. Second order transfer functions by the value of 

Case  Transfer Function 

1 1 
 

2 1.5 
 

3 0.5 
 

4 0 
 

5 -0.1 
 

 

 

 

 

 

 

 

 

 

Figure 7. Second order system step 

response: (a) Case 1. (b) Case 2. 

(c) Case 3. (d) Case 4. (e) Case 5. 

(f) Step input. 



 

 

 

 

 

 

4.2.  Auto-tune algorithm results 

The controller with the auto-tune algorithm was applied to all the second order cases mentioned in the 

previous section. Due to the limited space of the paper only the step responses of the case 3 and case 5 

which represent underdamped and unstable systems are shown in figure 8 - figure 13. The auto-tuned 

gains, open-loop and close-loop performance measures are shown in table 3. 

 

 

Figure 8. Step response of case 3, iteration 1 - iteration 5. 

 

Figure 9. Step response of case 3, iteration 6 - iteration 10. 

 

Figure 10. Step response of case 3, iteration 11 - iteration 14. 

 



 

 

 

 

 

 

 

 

Figure 11. Step response of case 5, iteration 1 - iteration 5. 

 

Figure 12. Step response of case 5, iteration 6 - iteration 10. 

 

 

Figure 13. Step response of case 5, iteration 11 - iteration 15. 

 



 

 

 

 

 

 

Table 3. Auto-tuned gains and performance measures. 

Case 

Auto-tuned gains 
Open-loop 

 performance measures 

Closed-loop  

performance measures 

GCE GIE GU Mp 
tr 

(second) 

ts 

(second) 
Mp 

tr 

(second) 

ts 

(second) 

1 0.3 0.129 16.28 0 3.358 5.834 0 0.661 1.194 

2 0.2 0.102 19.69 0 5.858 10.660 0 0.497 0.818 

3 0.3 0.078 12.72 16.3 1.638 8.076 0 0.598 1.014 

4 0.3 0.089 22.34 100 1.020 N/A 0 0.520 0.922 

5 0.3 0.067 29.76 N/A 0.9467 N/A 0 0.545 1.037 

 

The results obtained show that the controller was successful in controlling all the systems. The 

performance was substantially improved from the second iteration by eliminating the overshoot and 

then in an iterative manner the rise-time and settling-time were improved. This was approximately 

achieved in 15 iterations.  

4.3.  Step disturbance rejection test  

After the completion of auto-tuning process all the systems were simulated for 100 seconds and tested 

with forcing a load of a step unit at time = 50 seconds. The responses are shown in figure 14 and 

figure 15. It is clear from the results that the auto-tuned gains were effective and the controller was 

able to overcome the disturbance.  

 

 

 

 

Figure 14. Closed-loop step disturbance 

rejection test response of case 3. 

 
Figure 15. Closed-loop step disturbance 

rejection test response of case 5. 

4.4.  Robustness test 

To investigate the robustness of the algorithm in the case of system parameter variations, the transfer 

function in case 3 was considered here and tested. From the table 3, the auto-tuned gains were as 

follows: GE = 1, GCE = 0.3, GIE =0.078 and GU = 12.72. The performance measures were as 

follows: Mp = 0, tr =0.598 and ts = 1. 014. The normal parameters of case 3 were: K = 1, n = 1 and = 

0.5. It was assumed that these parameters are changed by 20%, then the values become: K = 1±20%, 



 

 

 

 

 

 

n = 1±20% and = 0.5±20%, therefore a total number of 27 sub-cases were tested and the 

performance measures were monitored and recorded as shown in table 3.  

It can be seen from the performance measures in table 4 that in several cases the overshoot was 

increased up to 5.7%, also an increased settling time was noticed. However the closed-loop step 

response of all the sub-cases was stable with satisfactory transient response.  

 

Table 4. Performance measures for change in parameters of case 3. 

Sub-

case 

Transfer Function 

Parameters 
Performance Measures 

 n  Mp 

tr 

(second) 

ts 

(second) 

1 1 1 0.5 0 0.598 1.014 

2 1 1 0.6 0 0.620 1.096 

3 1 1 0.4 0 0.576 1.787 

4 1 1.2 0.5 0 0.644 1.554 

5 1 1.2 0.6 0 0.670 1.608 

6 1 1.2 0.4 0 0.618 1.494 

7 1 0.8 0.5 4.710 0.593 2.456 

8 1 0.8 0.6 3.221 0.608 2.423 

9 1 0.8 0.4 5.042 0.577 2.485 

10 1.2 1 0.5 0 0.588 1.058 

11 1.2 1 0.6 0 0.608 1.133 

12 1.2 1 0.4 0 0.570 0.978 

13 1.2 1.2 0.5 0 0.622 1.341 

14 1.2 1.2 0.6 0 0.639 1.375 

15 1.2 1.2 0.4 0 0.604 1.305 

16 1.2 0.8 0.5 1.571 0.582 0.901 

17 1.2 0.8 0.6 0.926 0.601 0.936 

18 1.2 0.8 0.4 2.320 0.564 1.220 

19 0.8 1 0.5 0 0.621 3.778 

20 0.8 1 0.6 0 0.645 3.400 

21 0.8 1 0.4 0 0.597 4.276 

22 0.8 1.2 0.5 0 0.630 5.330 

23 0.8 1.2 0.6 0 0.657 4.868 

24 0.8 1.2 0.4 0 0.605 5.775 

25 0.8 0.8 0.5 4.366 0.653 3.155 

26 0.8 0.8 0.6 3.192 0.675 3.113 

27 0.8 0.8 0.4 5.719 0.631 3.192 

 

 

 



 

 

 

 

 

 

4.5.  Case study 

The transfer function shown in equation (5) represents two simple stages of mixing tanks, first order 

chemical reactors or heating systems connected in series [31]. A method has been proposed to design a 

PID controller in [31], where by relating the step response overshoot to the positions of zeros and 

poles of the transfer function, the parameters of the PID controller has been calculated. The controller 

has been applied to achieve zero overshoot response. 

 

   

(5) 

 

Three tests were conducted on the above system: the FPD+I controller with tuned gains using the 

auto-tune algorithm, the conventional PID controller as proposed in [31] and a conventional PID 

controller where Matlab auto-tuner tool was used to determine the controller gains . The parameters of 

the three controllers were as follows: for the FPD+I (GE = 1, GCE = 0.5, GIE = 0.017, and GU = 

56.53), for the PID controller using the method in [31] (P = 7.2, I = 0.72 and  D = 6.99. The original 

values were KC = 7.2, Ti = 10 and Td = 0.972 and they were converted to the values of P, I and D to be 

used within the setting of Matlab PID controller) and for the conventional PID controller using Matlab 

auto-tuner (P = 1.74, I = 0.20 and D = -4.58).  

The closed-loop step responses of the three controllers along with the open-loop step response are 

shown in figure 16 and the performance measures of the controllers are shown in table 5. 

 

 

 
Figure 16. Simulation results: (a) Open-loop. (b) Conventional PID (parameters 

found using Matlab auto tuner). (c) Conventional PID (parameters found using 

the method in [31].(d) FPD+I controller. 

 

 



 

 

 

 

 

 

Table 5. The performance measures of each controller. 

 Close-loop step response 

Performance 

Measures 
Open-loop 

Conventional PID 

(parameters found 

using Matlab auto- 

tuner) 

Conventional PID 

(parameters found 

using the method in 

[31]) 

Fuzzy FPD+I 

(parameters found 

using the auto-tune 

algorithm) 

Mp 0 8.9 0 0 

tr (second) 22.15 7.855 3.96 1.086 

ts (second) 40.17 24.530 6.9 1.908 

 

It is evident from the results that the auto-tune algorithm was highly effective and response of the 

FPD+I controller has achieved zero overshoot with faster rise time and shorter settling time compared 

to other PID controllers.  

5.  Conclusions 

An auto-tune algorithm for a fuzzy PID controller has been designed and applied to several second 

order systems. The results have been encouraging and indicate the validity of the technique where the 

performance of the system response progressively improves as the system is subjected to new step 

inputs. The results also showed that the algorithm was highly effective in achieving zero overshoot 

and produced a faster transient response. In addition, the robustness of the algorithm was investigated 

in the case of system parameter changes and the results showed a satisfactory performance.  

A case study result showed that the auto-tuning algorithm outperformed the conventional PID 

controller in terms of achieving zero overshoot and faster transient response. 
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