

Eng. taghreed. I. Al samarrai Civil engineering department

GENERAL

Before 60's

- * Concrete with f_c' approximately 10.5 21 MPa, and reinforcement with method, resulted in large stiff sections having small deflection. f_y 230 - 280 MPa were predominant. The use of these materials with conservative allowable stress, along with the straightline working stress
- Ordinary reinforced concrete design involved little concern for deflections

Today

- * The common use of 400 MPa yield strength steel and of concrete with use of lower strength. fc' 20 - 63 MPa permits smaller sections than those resulting from the
- The permissible deflection is governed by the serviceability requirement.

Both the short-time (instantaneous or immediate) and the long-time effects must be considered in deflection consideration.

Where:

$$\Delta_{\text{total}} = \Delta_{(i)} + \Delta_{(cs)}$$

 Δ_{total} = total deflection

 $\Delta_{(0)}^{\text{local}}$ = immediate (short-time) deflection $\Delta_{(cs)}$ = deflection due to creep and shrinkage

(= long-time deflection)

- * The acceptable deflection depends on :
- the type of building (warehouse, school, factory, residence, etc.)
- the presence of plastered ceilings
- the type and arrangement of partitions
- the sensitivity of equipment to deflection
- the magnitude and duration of live load.
- one-way (beams and slabs) and two-way systems. The general concepts dealt with in this topics are applicable to both

DEFLECTION CONTROL METHOD

For One-Way Structures:

A. MINIMUM DEPTH (hmin)

B. CONTROLED BY ALLOWABLE DEFLECTION

For Two-Way Structures:

A. MINIMUM DEPTH (h_{min})

MINIMUM DEPTH

1. ONE-WAY STRUCTURES

The minimum depth (h_{min}) of one-way structures is defined as :

SNI Table 3.2.5(a)

		۵	٦	D	D	D	1111	
-	100	240	100	240	100	240	400	270
Slab	L/20	L/27	L/27 L/24	L/32	L/28	L/37 L10	L10	L/13
Beam	L16	L/21	L/18.5	L/21 L/18.5 L/24.5 L/21	L/21	L/28 L/8	L/8	L/11

Go to example

For those structures whose depth greater than the above requirement, its deflection were not to be check.

MINIMUM DEPTH - Cont'd.

2. TWO-WAY STRUCTURES

The minimum depth (h_{min}) of slab without interior beam :

SNI 3.2.5 (c)

(MPa) Exterior Beam Yes No 300 L/33 L/36	~				stress Exterior	
o L/36	o m	am		Panel	Interior	Without Drop Panel
Ext Yes						
No L/36	No	ווטו סבמווו	rior Doom	Panel	Exterior	With Drop Panel
L/40				Panel	Interior	Panel

2. TWO-WAY STRUCTURES - Cont'd.

The minimum depth (h_{min}) of slab with interior beam:

$$\min_{\min} = \frac{L_n (0.8 + \frac{f_y}{1500})}{36 + 5\beta [\alpha_m - 0.12 (1 + \frac{1}{\beta})]} \dots SNI 3.2.3.(3)$$

But may not be smaller than:

And need not to be greater than:

$$h = \frac{L_n (0.8 + \frac{f_y}{1500})}{36 + 9\beta}$$

$$h = \frac{L_n (0.8 + \frac{f_y}{1500})}{36}$$

In all cases, the minimum depth of slab may not less than : * 120 mm for $\alpha_{\rm m}$ < 2.0

for
$$\alpha_{\rm m} < 2.0$$

for $\alpha_{\rm m} \ge 2.0$

$$\alpha = \frac{E_{cb}}{E_{cs}} \left(\frac{b_w}{L} \right) \left(\frac{h}{h_f} \right)^3 f$$

Where:

Q = relative stiffness ratio of beam and slab

$$\alpha_{\rm m}$$
 = average of α

= constant from Graphic 2.6 or 2.7

SHORT-TIME (INSTANTANEOUS) DEFLECTIONS

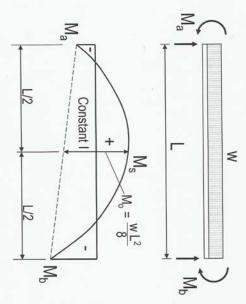
$$\Delta_{(j)} = K \frac{5}{48} \frac{ML^2}{E_c I_e}$$

Where:

= instantaneous/ immediately deflections

we ×∟ŏ = span length

= coefficient based on load and support condition


= effective moment of inertia

= modulus of elasticity of concrete = 4700 √f_c' MPa

COEFFICIENT K

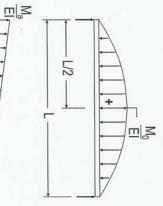
 \Rightarrow

DEFLECTION FOR ELASTIC SECTIONS

$$\Delta_{\text{max}} = \beta_{\text{a}} \frac{\text{M L}^2}{\text{E I}_{\text{c}}}$$

Where:

 $\Delta_{\text{max}} =$ maximum deflection in an elastic member


bending moment

 β_{a} Γ H H span length

modulus of elasticity moment of inertia of section

loading. degree of fixity at supports, the a coefficient that depends on the the span, and the distribution of variation in moment of inertia along

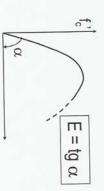
Component conjugate beams

The total midspan deflections, Δ_{m} is :

Due to uniform load : $\Delta_s = \frac{5 M_0 L^2}{48 EI}$

Due to left/right end moment:

$$\Delta_{a} = \Delta_{b} = \frac{-M_{(a \text{ or } b)} L^{2}}{16 \text{ El}}$$


$$\Delta_{m} = \Delta_{s} + \Delta_{a} + \Delta_{b}$$
$$= \frac{L^{2}}{48 \text{ EI}} \left[5M_{0} - 3 \left(M_{a} + M_{b} \right) \right]$$

and,
$$M_s = M_0 - \frac{1}{2} (M_a + M_b)$$
,

m∣≥

then :
$$\Delta_{\rm m} = \frac{5 L^2}{48 \, \text{EI}} \left[M_{\rm s} - \frac{1}{10} \left(M_{\rm a} + M_{\rm b} \right) \right]$$

MODULUS OF ELASTICITY

- For homogeneous material : E in tension ≈ E in compression
- In a reinforced concrete:
- **Creep** affects the E in compression zone **Crack** affects the E in tension zone

 \mathfrak{C}

- magnitude of stress from top to bottom at a section but also along In both tension and compression zone, E varies not only with the the span.
- and will generally magnify deflections by a factor of two or three. Further, creep and shrinkage over a period of time effectively reduce E